
Tecnologia e caratterizzazione dei prodotti lattiero-caseari

Parte 2
I latti concentrati e in polvere

ZEPPA G. Università degli Studi di Torino

DL 8/10/11 n. 175 (Direttiva 2007/61/CE)

Latte parzialmente disidratato

Si intende per «latte parzialmente disidratato» il prodotto liquido, con o senza aggiunta di zuccheri, ottenuto mediante parziale eliminazione dell'acqua dal latte, dal latte totalmente o parzialmente scremato o da una miscela di tali prodotti, eventualmente con aggiunta di crema di latte o di latte totalmente disidratato o di questi due prodotti; nel prodotto finito l'aggiunta di latte totalmente disidratato non deve superare il 25 per cento di estratto secco totale ottenuto dal latte.

Latte totalmente disidratato

Si intende per «latte totalmente disidratato» il prodotto solido ottenuto mediante eliminazione dell'acqua dal latte, dal latte totalmente o parzialmente scremato, dalla crema di latte o da una miscela di tali prodotti ed il cui tenore in acqua e' uguale o inferiore al 5 per cento in peso del prodotto finito.

DL 8/10/11 n. 175

<u>Latte parzialmente disidratato</u>

- Senza aggiunta di zuccheri
- a) latte concentrato ricco di grassi, intendendosi per tale il latte parzialmente disidratato contenente, in peso, almeno il 15% di materia grassa ed il 26,5% di estratto secco totale ottenuto dal latte;
- b) latte concentrato o latte intero concentrato, intendendosi per tale il latte parzialmente disidratato contenente, in peso, almeno il 7,5% di materia grassa e il 25% di estratto secco totale ottenuto dal latte;
- c) latte parzialmente scremato concentrato, intendendosi per tale il latte parzialmente disidratato contenente, in peso, almeno l'1% e meno del 7,5% di materia grassa e almeno il 20% di estratto secco totale ottenuto dal latte;
- d) latte scremato concentrato, intendendosi per tale il latte parzialmente disidratato contenente, in peso, non piu' dell'1% di materia grassa e non meno del 20% di estratto secco totale ottenuto dal latte;

DL 8/10/11 n. 175

<u>Latte parzialmente disidratato</u>

- Con aggiunta di zuccheri
- e) latte concentrato zuccherato o latte intero concentrato zuccherato, intendendosi per tale il latte parzialmente disidratato, con aggiunta di zucchero (zucchero di fabbrica, zucchero bianco o zucchero bianco raffinato), contenente, in peso, almeno l'8% di materia grassa e il 28% di estratto secco totale ottenuto dal latte;
- f) latte parzialmente scremato concentrato zuccherato, intendendosi per tale il latte parzialmente disidratato con aggiunta di zucchero (zucchero di fabbrica, zucchero bianco o zucchero bianco raffinato) e contenente, in peso, almeno l'1% e meno dell'8% di materia grassa e almeno il 24% di estratto secco totale ottenuto dal latte;
- g) latte scremato concentrato zuccherato, intendendosi per tale il latte parzialmente disidratato, con aggiunta di zucchero (zucchero di fabbrica, zucchero bianco o zucchero bianco raffinato) e contenente, in peso, non piu' dell'1% di materia grassa e non meno del 24% di estratto secco totale ottenuto dal latte

DL 8/10/11 n. 175

Latte totalmente disidratato

- a) latte in polvere ricco di materia grassa o polvere di latte ricco di materia grassa, intendendosi per tale il latte disidratato contenente, in peso, almeno il 42% di materia grassa;
- b) latte in polvere, latte intero in polvere, polvere di latte o polvere di latte intero, intendendosi per tale il latte disidratato contenente, in peso, non meno del 26% e meno del 42% di materia grassa;
- c) latte parzialmente scremato in polvere o polvere di latte parzialmente scremato, intendendosi per tale il latte disidratato contenente, in peso, piu' dell'1,5% e meno del 26% di materia grassa;
- d) latte scremato in polvere o polvere di latte scremato, intendendosi per tale il latte disidratato contenente, in peso, al massimo 1'1,5% di materia grassa.

Latte parzialmente disidratato con aggiunta di zuccheri "latte condensato"

Standardizzazione

Latte totalmente scremato → Magro

Latte parzialmente scremato → Al 5% di grasso

Latte intero → Al 9% di grasso

- Trattamento a 130-140 °C per pochi secondi
- Eventuale omogeneizzazione
- Zuccheraggio con sciroppo bollente di saccarosio al 70% sino ad un rapporto finale di concentrazione che rispetti la formula:

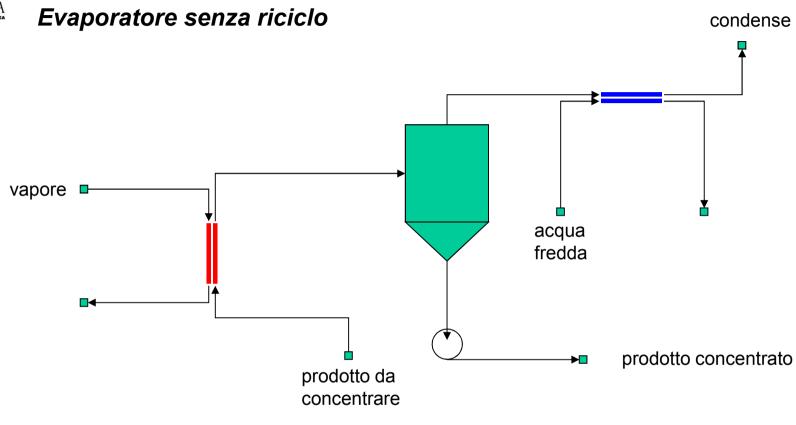
 $[(\%saccarosio)*100] / [(\%saccarosio)+\%H2O] \ge 62$

- Concentrazione sottovuoto a 48-53 °C sino a ps 1,3
- Raffreddamento rapido a 30 °C
- Confezionamento sterile

Latte parzialmente disidratato senza aggiunta di zuccheri "latte evaporato"

- Standardizzazione
- Riscaldamento a 115-128 °C, 1-6 min
- Concentrazione a 48-53 °C sottovuoto sino a ps 1.15 o 2.2-2.7 volte il latte di partenza (mai sottrarre più del 75% di acqua)
- Omogeneizzazione
- Raffreddamento rapido a 30 °C
- Confezionamento sotto vuoto
- Sterilizzazione a 100-120 °C per 15-20 min / 140 °C per 3 sec

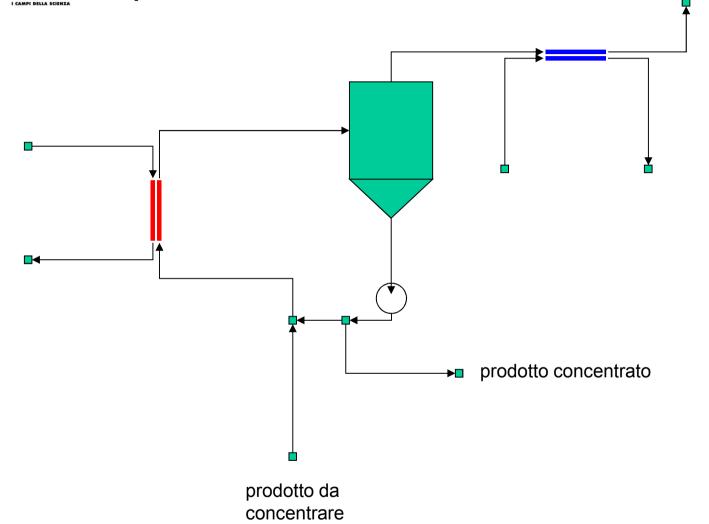
Concentrazione


- La concentrazione è definita come la parziale eliminazione del solvente (acqua in genere) da una soluzione
- Aumenta la conservabilità del prodotto e consente di preparare i prodotti per altri trattamenti (essiccamento, liofilizzazione o cristallizzazione)
- E' una tecnica molto utilizzata nelle IA (succhi concentrati, latte in polvere, zucchero)
- I vantaggi sono la riduzione del volume dei prodotti e quindi i minori costi di stoccaggio e trasporto
- Gli svantaggi sono l'utilizzo di elevate temperature con perdita delle componenti volatili e delle componenti termolabili → utilizzo di basse pressioni
- Tecniche di concentrazione sono:
 - evaporazione
 - crioconcentrazione
 - osmosi inversa

Evaporazione

- E' un sistema molto antico, utilizzato forse ancora prima della scoperta del fuoco e basato sul sole
- Un sistema di evaporazione è formato da
 - scambiatore → sistema di riscaldamento del prodotto
 - separatore → area dove avviene la separazione del liquido concentrato dal vapore
 - condensatore → scambiatore per la condensazione del vapore sia diretto (il vapore è mescolato con l'acqua di raffreddamento) o indiretto (scambiatore a superficie)
- Molto importate l'evaporatore il cui funzionamento dipende dalla sua struttura fisica, dal tipo di prodotto, dalle incrostazioni eventuali di superficie, dal movimento del prodotto ecc.
- Esistono evaporatori senza riciclo (il prodotto passa un volta sola nell'evaporatore e nel separatore uscendo alla concentrazione voluta) o con riciclo (il prodotto passa più volte nell'evaporatore e nel separatore e riceve altro prodotto da trattare)
- Un sistema di evaporazione può essere a singolo effetto od a multiplo effetto.
 Quest'ultimo può essere in equicorrente od in controcorrente

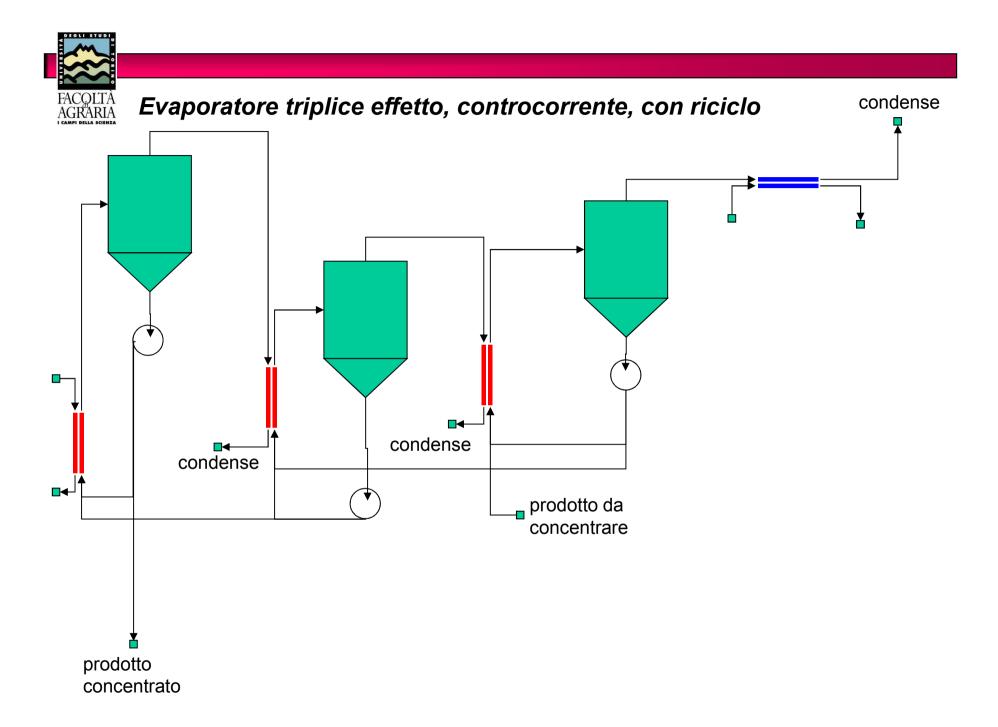
scambiatore


evaporatore

condensatore

Evaporatore con riciclo

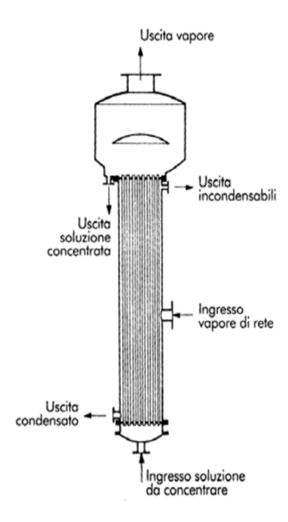
condense


concentrare

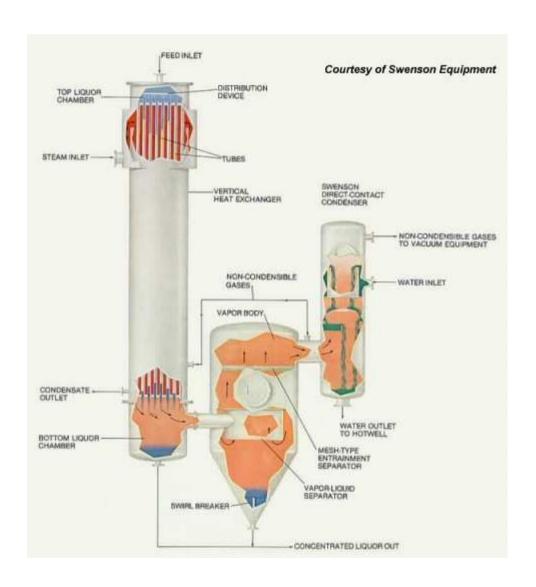
Evaporatore triplice effetto, equicorrente, senza riciclo condense prodotto concentrato condense condense prodotto da

concentrare

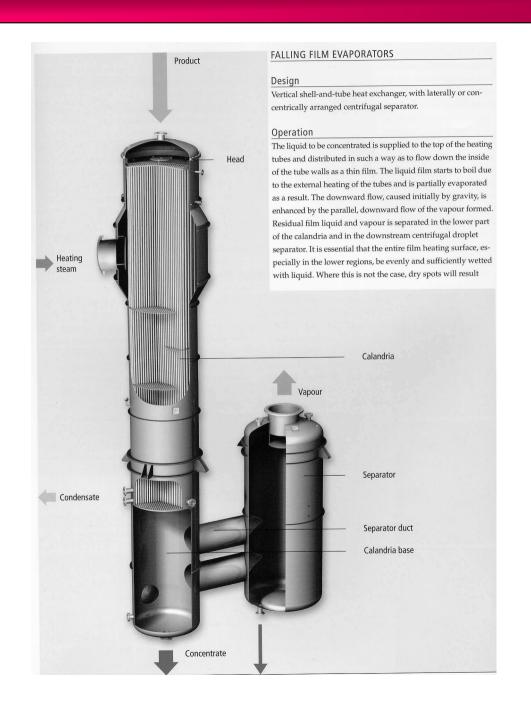
Evaporatore triplice effetto, equicorrente, con riciclo condense prodotto concentrato condense condense prodotto da

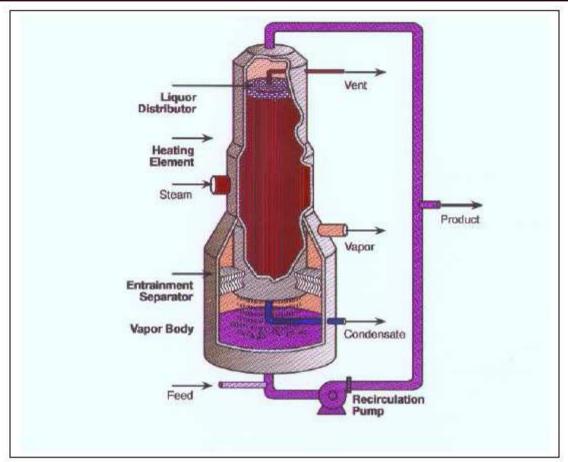


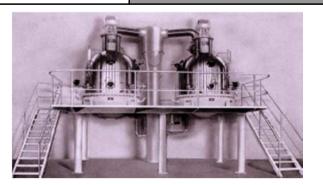
Evaporatori	
A fuoco diretto	
Incamiciati	
A tubi	Corti
	Sommersi
	Lunghi a film ascendente
	Lunghi a film discendente
A piastre	
A film agitato	
Centrifughi	
Wurling	
A bolla	
A pompa di calore	

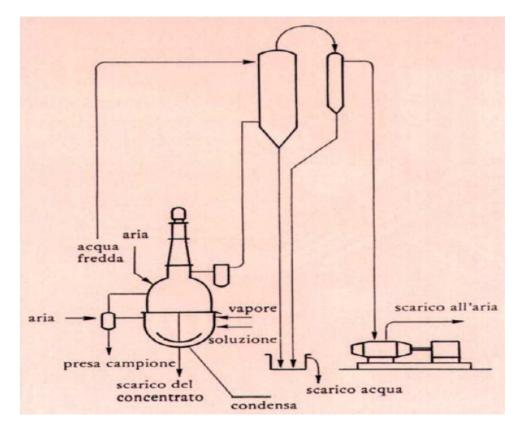

Gli evaporatori a tubi verticali lunghi, detti anche tipo Kestner, presentano un numero ridotto di tubi lunghi (circa $6 \div 7$ metri e circa 2 cm di ϕ) nei quali circola la soluzione da concentrare. Il movimento del liquido all'interno dello scambiatore è dovuto alla gravità, se **discendente** o cadente od al trascinamento dovuto all'ebollizione, se **ascendente**. All'esterno dei tubi, nel contenitore cilindrico che li racchiude, viene inviato vapore. La soluzione, alimentata dalla parte inferiore, viene mantenuta nei tubi a un livello piuttosto basso, circa un terzo della loro lunghezza.

In genere questi modelli consentono coefficienti di scambio molto elevati grazie alla velocità del liquido a contatto dei tubi, piuttosto alta, ma sono molto sensibili alla formazione di sporco dovuto alla precipitazione di solidi sulla superficie di scambio, che diventa il punto di massima temperatura e concentrazione. Sono particolarmente usati nell'industria del pomodoro, del siero e dei vini grazie al breve tempo di stazionamento.









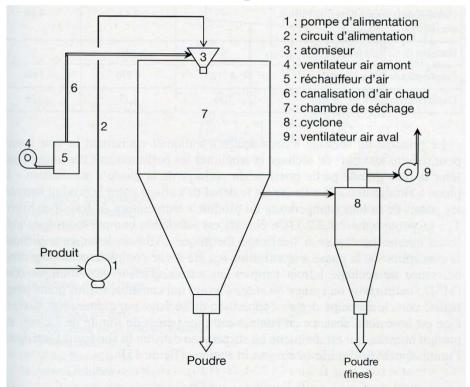
Evaporatori	
A fuoco diretto	
Incamiciati	
A tubi	Corti
	Sommersi
	Lunghi a film ascendente
	Lunghi a film discendente
A piastre	
A film agitato	
Centrifughi	
Wurling	
A bolla	
A pompa di calore	

Le bolle sono degli evaporatori incamiciati chiusi, operanti sotto vuoto, molto utilizzate nelle industri alimentari. Un agitatore interno serve a evitare incrostazioni sulla superficie interna della bolla e a facilitare la trasmissione del calore. Sono generalmente utilizzate nelle industrie di pomodoro, confetture e saccarifera.

Latte totalmente disidratato o "latte in polvere"

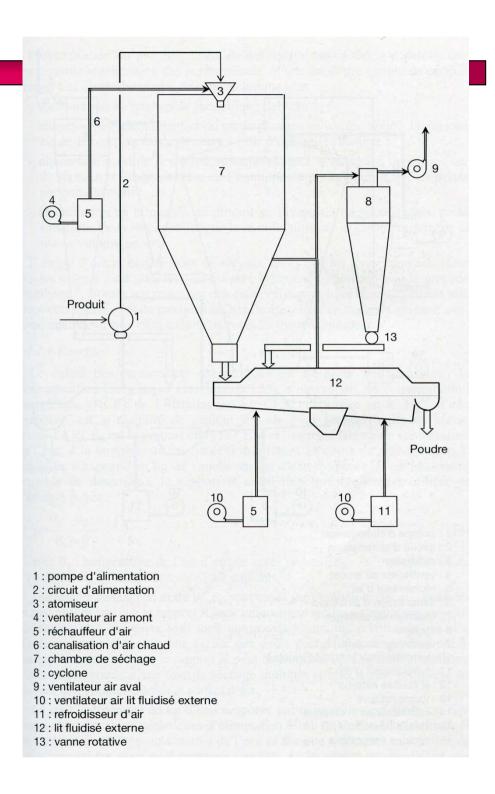
Essiccazione spray

- Consiste nel polverizzare il prodotto da essiccare in una corrente calda → si ha un trasferimento di calore dal gas al prodotto e di acqua in senso inverso
- L'acqua superficiale evapora e richiama acqua dall'interno della goccia \rightarrow finchè si ha movimento di acqua la temperatura rimane costante, poi aumenta
- La velocità di essicamento è legata a :
 - ✓ Superficie di evaporazione → aumenta al diminuire del diametro delle gocce
 - ✓ Differenza fra la pressione parziale del vapore sulla superficie della goccia e dell'aria che dipende dall'umidità assoluta e dalla temperatura
 - ✓ Velocità di migrazione verso l'esterno della goccia → si può ridurre con la formazione di crosta superficiale
- La dispersione può avvenire grazie a turbine centrifughe o con iniettori
- Prodotto molto solubile, di colore chiaro, con poche alterazioni organolettiche
- Magro <1.2% grasso Parzialmente scremato <25.9% grasso Intero > 26% grasso

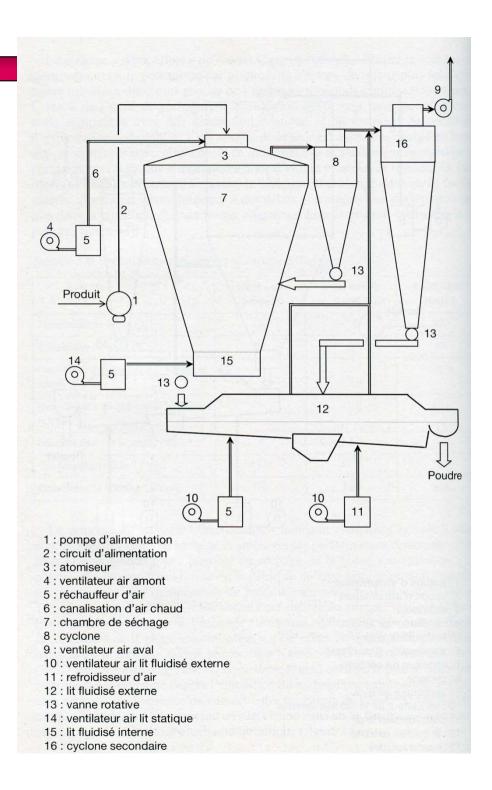


Latte totalmente disidratato o "latte in polvere"

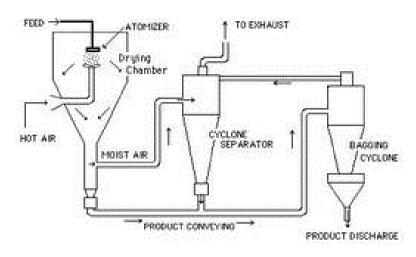
Essiccazione spray

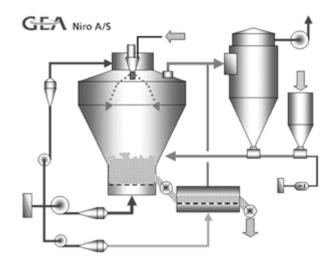

- Scrematura eventuale
- Concentrazione
- Essiccazione per nebulizzazione in camere a 140-150 °C
- Può essere ad una fase o due fasi o tre fasi → se ad una fase servono temperature più elevate → denaturazioni proteiche più forti → polvere meno solubile
- Istantaneizzazione -> le polveri vengono riumidificate così da risultare più solubili

A semplice effetto o ad una fase → tempo di essiccamento molto breve (20-60 sec)

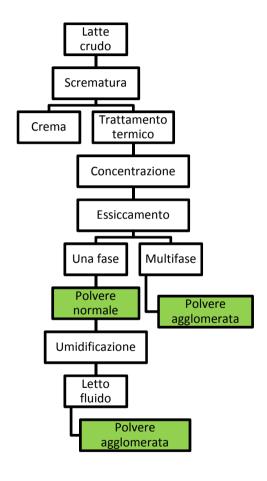


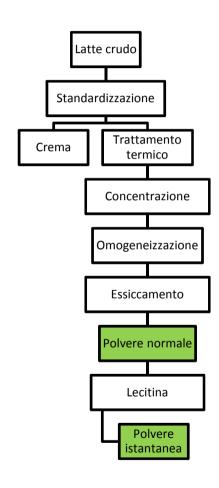
A due fasi → tempo di essiccamento più lungo (diversi minuti) → il prodotto esce e viene completato l'essiccamento in un sistema a letto fluido





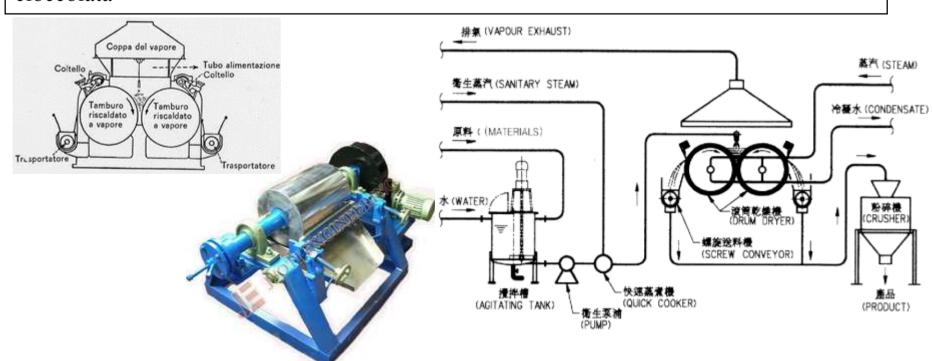
A tre fasi o MSD (Multi Stage Drying) → il prodotto viene essiccato da uno spray più un letto fluido interno quindi passa ad un letto fluido esterno → prodotto migliore → non ci sono contatti del latte con la parete → migliore resa termica





Polvere di latte scremato

Polvere di latte intero



Essiccazione su cilindri rotanti (processo Roller)

- Usato quando serve molto grasso (> 85%)
- Scrematura (eventuale)
- Concentrazione
- Essiccazione su cilindri controrotanti a 130-150 °C per 6-30 sec
- → Prodotto poco solubile, di colore scuro con evidente 'sapore di cotto' → industrie della cioccolata

Bibliografia

- Salvadori del Prato O. (2005). Tecnologie del latte. Ed. Edagricole
- Vignola C.L. (2002). Science et technologie du lait. Ed. Presses Internationales Polytechnique
- Jeantet R., Croguennec T., Mahaut M., Schuck P., Brulé G. (2008). Les produits laitiers. Ed. Lavoisier