

Viviana Costa – Application Technologist Team Leader settore Sweet (Confectionery, Sweet Dairy & Bakery)

KERRY

AGENDA

- Rassegna dei principali prodotti di confetteria
- Materie prime di base utilizzate: zuccheri, acidi, coloranti, aromi, polialcoli, dolcificanti
- Caramelle dure (high boiling)
- Caramel (soft boiling)
- Gommose e gelatine (gums & jellies) + agenti gelificanti
- Prodotti bassinati (dragees)
- Chewing gum
- Compresse

GOMMOSE & GELATINE

CARAMEL

(chewy, toffee, fudge)

LIQUIRIZIE

PRODOTTI DI CONFETTERIA (con o senza zucchero)

FONDANT

CROCCANTI

PRODOTTI AERATI

PRODOTTI BASSINATI (CONFETTI O DRAGEES) **COMPRESSE**

CHEWING GUM

CATEGORIA	SOTTOTIPI	UMIDITA' RESIDUA	EQ. UMIDITA' RELATIVA	INGREDIENTI BASE
CARAMELLE DURE	acide - con erbe - latte	1-3%	10-25%	Zucchero, sciroppo di glucosio
CARAMEL	toffee – chewy - fudge	6-10%	40-65%	Zucchero, sciroppo di glucosio , grasso, emulsionante
GOMMOSE (1) & GELATINE (2)	 gomma arabica, gelatina, amido agar-agar, pectina 	10-25%	45-70%	Zucchero, sciroppo di glucosio, agente gelificante
PRODOTTI AERATI	Marshmallow, torrone, angel kiss	10-25%	45-70%	Zucchero, sciroppo di glucosio, agente aerante
LIQUIRIZIE		10-18%	55-70%	Zucchero, sciroppo di glucosio, farina (liquirizia)
FONDANT	Fondant o fondant creme	10-12%	75-85%	Zucchero, (cremor tartaro, zucchero invertito, invertasi, sorbitolo)
PRODOTTI BASSINATI	1.b. dura, 2. morbida, 3. con cioccolato	1-10%	55-85%	 zucchero (+ cere) zucchero e sc. di glucosio (+ cere) cioccolato
CHEWING GUM	chewing gum, bubble gum	2-4%	40-50%	Gomma base, zucchero a velo, sciroppo di glucosio
COMPRESSE	effervescenti	max 1%	75-80%	zucchero granulato, lubrificante
CROCCANTI	duro, morbido, laminato	1-10%	15-65%	zucchero, (sc. glucosio per morbido), nocciole / mandorle / arachidi

MATERIE PRIME

CARATTERISTICHE TECNOLOGICHE DEI CARBOIDRATI

Monosaccaridi (fruttosio, destrosio, galattosio)

- Hanno un basso peso molecolare
- Fanno diminuire l'equilibrio di umidità relativa
- Sono igroscopici
- Reazione di Maillard
- Cambiano colore con alte temperature (causa punto di fusione non elevato) e pH elevati (in presenza di solidi del latte) → da trasparente a giallognolo
- Diminuiscono la viscosità del prodotto
- Sono zuccheri riducenti
- Sensibili a pH basici
- Quantità in prodotti di confetteria < 10%; maggiori nei filling perché trattengono umidità

Disaccaridi (saccarosio, maltosio, lattosio)

- Sensibili all'acido (vengono scomposti in monosaccaridi)
- In paragone ai monosaccaridi aumentano la viscosità
- Il saccarosio non è riducente

Polisaccaridi

- Capacità di formare film
- Stabilizzano l'umidità (trattengono)
- Prevengono la granitura (formano una fase continua impedendo la ricristallizzazione)
- Sono responsabili delle proprietà dello sciroppo di glucosio

Parametri di Mono e Disaccaridi

ZUCCHERO	DOLCEZZA	SOLUBILITA' a 20°C	PUNTO DI FUSIONE
Destrosio	50	47,20%	
Monoidrato			83°C
Anidro			146°C
Fruttosio	120	79,20%	102°C
Galattosio	0	45,00%	
Monoidrato			118°C
Anidro			165°C
Saccarosio	100	67,00%	183-186°C
Maltosio	65	45,00%	102°C
Lattosio	35	20,00%	202°C

ZUCCHERO

- Di canna o da barbabietola
- Diversi prodotti: zucchero bianco EU qualità I zucchero bianco EU qualità
 II sciroppo di zucchero sciroppo di zucchero invertito
- Classificazione in base alla qualità (parametri: colore del cristallo, colore dello zucchero disciolto, contenuto in ceneri → se alte fa schiuma → bassa qualità)
- Classificazione in base alla granulometria:
 - Grossolano 1-1,6 mm (→ impiega più tempo a dissolversi, adatto per cioccolato, influenza la viscosità e non dà problemi di polvere)
 - Medio 0,5-1,25 mm
 - Fine 0,2-0,75 mm
 - Extrafine (casta) 0,1-0,35 mm
 - Zucchero a velo < 0,1 mm (→ critico per igroscopicità)

Importanza in confetteria

- Maschera l'amaro nel cioccolato
- Carrier e conservante per gli aromi
- Stabilizzante
- Dà corpo (bulking agent)
- Dà struttura
- → Influenza le proprietà dei prodotti di confetteria

Reazione di inversione

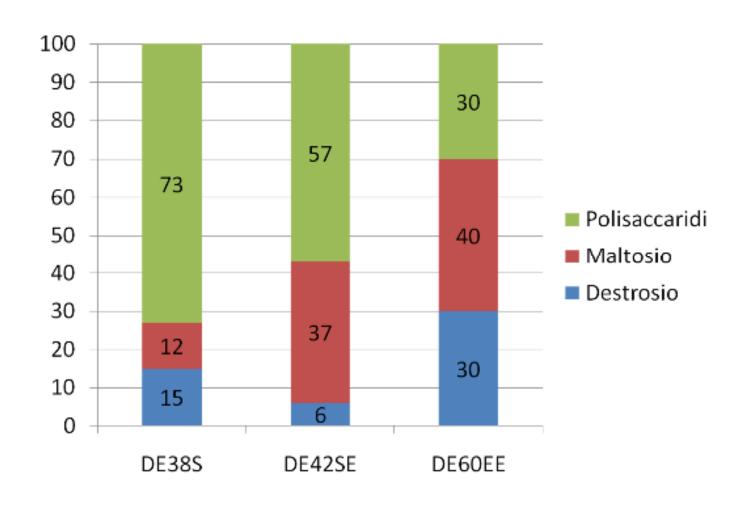
- Il saccarosio viene scomposto in glucosio + fruttosio
- Avviene con acidi o enzimi (invertasi)
- Nella produzione delle caramelle dure, con alte temperature, si ha un processo di inversione dovuto anche alla presenza di sciroppo di glucosio (con pH fra 4,5 e 5,5), che influenza struttura e igroscopicità della caramella
- Lo zucchero invertito non è una sostanza omogenea

Solubilità del saccarosio

- 66,7% in acqua a 20°C
- Soluzione insatura, satura o sovrasatura
- La temperatura influenza la solubilità (in raffreddamento si ha processo di ricristallizzazione. Per prevenirlo → polisaccaridi)
- La velocità di solubilizzazione dipende dal contenuto di acqua, dalla grandezza dei cristalli di zucchero, dalla viscosità di altre materie prime e dal tempo e intensità di agitazione.

Punto di fusione

- 183°C (minore se lo zucchero non è puro)
- Inversione (glucosio + fruttosio) con formazione di prodotti di degradazione → idrossimetilfurfurale


SCIROPPO DI GLUCOSIO

- È una soluzione concentrata di diversi tipi di carboidrati (destrosio, maltosio, oligo e polisaccaridi)
- Si produce per idrolisi acida e/o enzimatica dell'amido
- La sostanza secca è minimo 70% (quello usato in confetteria ne ha in genere 80%)
- Ha un indice DE (destrosio equivalente) fra 20 e 99,5; in confetteria si utilizza generalmente fra 38 e 60 (fra 20 e 38 basso DE; > 48 alto)
- Il DE è la quantità di zuccheri riducenti in % calcolati come destrosio sul secco
- Sciroppi di glucosio particolari: alto maltosio, iso-glucosio (contiene anche fruttosio, più utilizzato per bevande e con composizione più simile a quella dello zucchero invertito)
- In base alla composizione si hanno diversi utilizzi: per esempio il 60 DE è utilizzato come ripieno per caramelle, mentre non è adatto per la produzione di caramelle dure

Composizione degli sciroppi di glucosio standard

Influenza del DE sulle proprietà dello sciroppo di glucosio

	Basso DE	Alto DE
Dolcezza		
Igroscopicità		
Rischio di imbrunimento		
Viscosità		
Prevenzione granitura		
Corpo		

ZUCCHERO INVERTITO

- Caratteristiche: potere dolcificante 75; solubilità a 20°C 62,8%; previene ricristallizzazione ed è un umettante
- Può essere prodotto con acido (a t più elevata), o con enzimi (t più basse e tempi più lunghi); si ottengono prodotti con diversi pH – secco
- Il tipo di acido, la concentrazione di acido o enzima, la temperatura, il tempo, il pH della soluzione, la durezza dell'acqua, influenzano il prodotto ottenuto
- La presenza di zucchero invertito può essere desiderata → agisce da "softener", può parzialmente sostituire lo sciroppo di glucosio; o non voluta → dà appiccicosità; crea problema nella formatura dei caramel (cold flow); dà un gusto più dolce, è igroscopico, dà problemi di cambiamento di colore; può impedire una granitura voluta (fudge)

ACIDI

- Acidi utilizzati in confetteria: malico, tartarico, citrico, lattico.
- In confetteria (soprattutto per le caramelle dure depositate) è usuale l'utilizzo di acidi **tamponati**, per diminuire il fenomeno dell'inversione
- Gli acidi tamponati contengono una parte di acqua (ex. acido citrico anidro → 0%; acido citrico monoidrato → 8,6%; acido citrico tamponato → 20%)
- Gli acidi hanno una influenza sulla **velocità di inversione** (es. citrico 0,64 citrico tamponato 0,51 tartarico 0,71 lattico 0,49 malico 0,59)
- Gli acidi hanno caratteristiche organolettiche differenti e possono essere utilizzati in diverse combinazioni per esaltare l'aroma (citrico → rilascio più veloce; malico e tartarico → effetto più prolungato)
- Esistono acidi ricoperti per un rilascio modulato (chewing gum)
- pH a concentrazione 1%: citrico 2,8 citrico tamponato 2,7 tartarico 2,1
 lattico 2,75 malico 2,35

Funzione degli acidi in confetteria:

- Esaltazione dell'aroma (gusti frutta)
- In filling effervescenti mix di acido citrico <u>anidro</u> e bicarbonato di sodio
- **Formazione del gel** nei prodotti a base pectina (in combinazione con sale tampone per prolungare il tempo di colaggio)
- In combinazione con enzimi, provoca la trasformazione del fondant in fondant creme (liquefazione durante lo stoccaggio, ex ripieno cioccolatini)
- In processo di alcalinizzazione del cacao, per fissare il livello di pH (neutralizzazione)

COLORANTI

I cifra: identifica la classe del composto

II cifra: identifica il colore

III cifra: identifica le sfumature

Classe chimica

- Coloranti di sintesi (azo → amaranto, tartrazina, azorubino → lista di Southampton; chinolina, blu brillante)
- Coloranti inorganici (biossido di titanio, carbon black; oro e argento per ricopertura esterna)
- Coloranti naturali (antociani, carotenoidi, cocciniglia)

Alimenti con funzione colorante (Colouring Food)

- concentrati di frutta / verdura con proprietà coloranti
- Ingrediente e non additivo (no numero E)
- No estrazione selettiva
- Dosaggio quantum satis

Principali problemi in confetteria:

- Influenza del pH (rosso, marrone)
- Dosaggi più elevati
- Possibili problemi ad alte temperature (soprattutto verde e blu)
- Influenza sul gusto

KERRY

AROMI

- Aromi naturali
- Aromi naturali identici
- Aromi artificiali

- Nuova legislazione: aromi naturali o non naturali
- Aromi 95/5 → non utilizzati
- In confetteria → importanza del solvente (limite 3 g/Kg) concentrazione degli aromi (alte temperature e notevole stress nel processo)

POLIALCOLI

- Gruppo Mono → Sorbitolo, Mannitolo, Xilitolo, Eritritolo
- Gruppo Di → Maltitolo, Sciroppo di Maltitolo, Isomalto, Lattitolo
- Gruppo Poli → Polidestrosio ("bulking agent")

Caratteristiche generali:

- Resistenti al calore
- Resistenti all'acido
- Resistenti a muffe e batteri
- No reazione di Maillard
- No ricristallizzazione (> no necessità di combinare con sciroppo per caramelle dure)
- Buona "flowability"
- Effetto anti-carie
- Effetto lassativo

SORBITOLO

Dolcezza: 60

Solubilità a 20°C: 70%

- Utilizzato per trattenere umidità e conferire sofficità morbidezza in confetteria e prodotti da forno, in percentuale del 5 – 10% (sotto forma di sciroppo di sorbitolo al 70%)
- Ottenuto dal glucosio per idrogenazione

MANNITOLO

Dolcezza: 60

Solubilità a 20°C: 18% (molto bassa)

Potere lassativo maggiore del sorbitolo

ERITRITOLO

XYLITOLO

Dolcezza: 100

Solubilità a 20°C: 63%

- Meno lassativo del sorbitolo
- Alto potere rinfrescante (utilizzato in combinazione con l'isomalto per effetto caldo – freddo)
- Aumenta il pH durante la digestione → simbolo tooth friendly

ISOMALTO

- Si ottiene dallo zucchero
- Diversi tipi → per il cioccolato LM (low moisture)
- Dolcezza: 45 → in caramelle dure combinato con dolcificanti intensivi
- Solubilità a 20°C: 25%
- Molto resistente all'acidità
- Poco igroscopico (caramelle dure sugar free possono non essere incartate)

MALTITOLO

- Si ottiene dall'amido
- Forme disponibili: sciroppo di maltitolo (75%) o in forma cristallina
- Solubilità a 20°C: 62%
- Dolcezza: 80
- Sciroppo non cristallizza
- Lieve effetto cooling
- Utilizzo per cioccolato

LATTITOLO

- Da idrogenazione di una soluzione di lattosio
- Dolcezza: 35
- Solubilità a 20°C: 55%

POLIDESTROSIO

- Bulking agent
- Solubilità a 20°C: 80%
- No dolcezza
- Comparabile a polisaccaridi → effetto su viscosità

INULINA

DOLCIFICANTI INTENSIVI

- NATURALI: Taumatina, Neoesperidina DC, Stevia
- ARTIFICIALI: Saccarina, Ciclamati, Aspartame, Acesulfame K, Sucralosio
- Combinazioni di più dolcificanti → sinergismo
- ASPARTAME non resistente al calore (amminoacidi) → utilizzo principale in chewing gum; problemi con persone con fenilchetonuria (metabolizzato come proteina)
- ACESULFAME K → molto utilizzato in caramelle dure
- SACCARINA → alta stabilità; retrogusto metallico

ALTRI INGREDIENTI

LIQUIRIZIA

- (a blocchi o in forma granulare)
- Contenuto in polisaccaridi variabile (14-50%) con influenza sulla struttura delle caramelle dure
- Regolamentazione del contenuto in Glicirrizina (altro parametro molto variabile)
- Cloruro di Ammonio

MALTO

 Contenuto in proteine (4,5%) può dare problemi di deformazione nelle caramelle stampate

MIELE

Paragonabile come effetto a zucchero invertito

CARAMELLE DURE (HIGH BOILINGS)

DEFINIZIONE / CARATTERISTICHE

- Soluzioni sovrasature di carboidrati
- Struttura vetroso amorfa, consistenza dura
- Umidità residua bassa (1-3%)
- Equilibrio di umidità relativa basso (<30%)
- Ingredienti: zucchero, sciroppo di glucosio + coloranti, acido, aromi
 + eventualmente latte, malto, miele, liquirizia
- Con un buono stoccaggio hanno una shelf life molto lunga
- Ricetta tipo:
 - 12 kg zucchero
 - 5 kg acqua
 - 12 kg sciroppo di glucosio

CLASSIFICAZIONI

- Per tipologia (frutta → con acido; con erbe / liquirizia / miele; con latte)
- Per processo (stampate o colate)
- Per **struttura** (struttura vetrosa; porosa → aerate; ricristallizzate)

PARAMETRI CHIAVE (per caramelle stampate)

- Zucchero 40-70%
- Sciroppo di glucosio 30-60%
- Inversione dopo cottura max 2% dopo aggiunta acido max 5%
- Zuccheri riducenti in prodotto finito max 23% (mono max 10%)
- Polisaccaridi 20% (prevengono ricristallizzazione)

PROCESSO PRODUTTIVO (CARAMELLE STAMPATE)

- DOSAGGIO INGREDIENTI:
 - gravimetrico o volumetrico
- COTTURA:
 - Batch cooker → pre cottura della soluzione di zucchero e acqua a 110C per assicurarsi che siano disciolti tutti i cristalli; aggiunta di sciroppo di glucosio. Agitatore per velocizzare il tempo di cottura. Temperatura 140 145C. Passaggio in camera del vuoto per ridurre l'umidità residua di 2-3% nel prodotto finito (abbassamento di temperatura di 10C fa perdere 1% di umidità → massa a 115 120C)
 - Impianti di cottura in continuo:
 - Coil cooker con scarico discontinuo o continuo
 - Thin film cooker (prodotti con proteine)

IMPASTAMENTO E TEMPERAGGIO:

- Fino a plasticità ok (per zucchero → 80-85C)
- Discontinuo (manuale o meccanico) o continuo
- Omogeneizzazione di colore aroma acido
- Evitare bolle d'aria per mantenere la trasparenza

FORMATURA:

- BATCH ROLLER e SIZING ROLLS→ si forma una corda (t 40-45C), con progressiva riduzione del diametro
- ESTRUSORE → per caramelle ripiene
- SISTEMI DI STAMPAGGIO: Uniplast o Strada

RAFFREDDAMENTO:

Per prevenire deformazione – 16C e max 40% UR

PACKAGING

RIPIENI (FILLING)

- FLUIDO: sciroppo zuccherino confettura alcolico (UR intorno 20%)
- **GRASSO**: marzapane, cioccolato (UR intorno 1%)
- SOLIDO: effervescente
- METODI: box filling laminazione pompa a vite con estrusore
- Per ripieni liquidi, si aggiunge sorbitolo nella base della caramella per abbassare la temperatura di plasticità
- Il solido del ripieno non può essere aumentato troppo → rischio di ricristallizzazione
- Se effetto voluto → ok. Caramella può essere aerata per far partire il processo
- Il filling deve essere 2C più freddo della massa della caramella in fase di riempimento
- I ripieni effervescenti non devono contenere acqua
- Rapporto acido / bicarbonato di sodio → min 56% / max 44%
- Bicarbonato di sodio sulla base 5-15%
- T max 65C per evitare evaporazione CO₂

PROCESSO PRODUTTIVO (CARAMELLE DEPOSITATE)

COTTURA:

- Rotor Cooker. Pre cottura in pressure dissolver a 120-130C. Tempi di cottura molto rapidi: 3-5 sec. Temperature: 150 160C. Inversione max 0,2 0,3%
- Microfilm Cooker . Tempo di cottura circa 8 sec. Il processo di cottura avviene sotto vuoto → temperatura minore (140C)

COLAGGIO:

- Caramelle non acide con bassissima inversione → viscosità più elevata che può causare problemi in fase di colaggio (→ si diminuisce il vuoto)
- Tramoggia riscaldata. Stampi in teflon

RICETTE LABORATORIO

CARAMELLE DURE CON ZUCCHERO

Ingredienti

Acqua 73.2 g

Sciroppo di glucosio 42DE 234.12 g

Zucchero 292.68 g

Cottura 142C

CARAMELLE DURE CON ISOMALTO

Ingredienti

Isomalto 1800g

Acqua 430g

Acesulfame K 1g

Cottura 158C

AROMI - CONSIDERAZIONI

- Aggiunti a temperature molto elevate (soprattutto caramelle depositate, 130-135C)
- Possibilmente non alcolici
- Solvente preferenziale: PG (triacetina può dare problemi di migrazione verso la superficie rendendo opaca la caramella)
- Aromi concentrati (10 volte la resa in sviluppo, dosaggio classico 1-3 g/Kg)
- Per caramelle dure senza zucchero: dosaggio maggiore, l'aroma è meno di impatto (dissoluzione in bocca più lenta per polialcoli che per zucchero)
- Acidità influenza dosaggio dell'aroma
- Costi non eccessivi (prodotto non ad alto valore aggiunto)
- Temperature inferiori per i ripieni (aroma nel ripieno)

FONDANT

CARATTERISTICHE

- Pasta bianca, da morbida a semi-dura
- Piccoli cristalli di zucchero dispersi in una soluzione satura (98% dei cristalli < 20 micron)
- Max 12% umidità
- 2 fasi: cristallina, discontinua (50-70%) + sciroppo, continua (30-50%) → zuccheri e acqua residua
- Ingredienti: acqua, zucchero, sciroppo di glucosio (DE standard o alto)
- Classificazione in base alla quantità di sciroppo di glucosio utilizzata per 100 kg di zucchero (diversi utilizzi) (es S10-15 → per prodotti di confetteria che devono mantenere la forma; S30 → filling per cioccolato)

PROCESSO PRODUTTIVO

- 2 Metodi di produzione: con cremor tartaro o con sciroppo di glucosio / zucchero invertito
- Cottura a 117-121C (per il metodo con sciroppo di glucosio, acqua e zucchero pre riscaldati a 110C prima di aggiunta sciroppo)
- Raffreddamento sotto 95C
- Battuto nel fondant beater (→ 45C). Fondant beater: cilindro con vite rotante, con acqua fredda che scorre nella doppia giacca
- Raffreddamento a 20C
- Stabilizzazione del fondant → minima ricristallizzazione

UTILIZZI del FONDANT

- Depositato in amido
- Depositato in cioccolato
- Estruso
- Utilizzato come ingrediente → seme di ricristallizzazione per fudge
- Glasse

FONDANT CREAM

- Scaldato e mixato con agente di liquefazione
- Se riscaldato troppe volte, aumenta la proporzione di cristalli > 20 micron
- Per utilizzo in cioccolato non va riscaldato sopra 35C
- Con l'aggiunta di invertasi e acidità della frutta, diventa un ripieno liquido

CARAMEL (SOFT BOILING)

DEFINIZIONE / CARATTERISTICHE

- Prodotti con consistenza "chewy"
- **Umidità** residua 5-10%
- Ingredienti base: zucchero, sciroppo di glucosio, grasso vegetale idrogenato ed emulsionanti
- Ingredienti aggiuntivi: latte, liquirizia, malto, miele, cacao cioccolato, frutta secca, gelatina, gomma arabica e amido

COMPOSIZIONE MEDIA:

_	Acqua	5-10%
_	Zucchero	30-60%
_	Sciroppo di glucosio	20-60%
_	Grasso	2-10%
_	Zucchero invertito	1-10%
_	Lattosio	0-6%
_	Proteine del latte	0-5%
_	Gelatina	0-2,5%

CLASSIFICAZIONE

- 1. TOFFEE (con latte, panna, burro)
- 2. TOFFEE CON INGREDIENTI (nocciole, mandorle, cioccolato, liquirizia)
- 3. CHEWY TOFFEE (a. con o b. senza fase cristallina)
- 4. TOFFEE AERATI
- 5. FUDGE (con latte, panna, burro e fase cristallina)

TIPI DI EMULSIONE:

- GRASSO IN ACQUA (fase discontinua → grasso) es. 1
- GRASSO IN ACQUA + SOSPENSIONI (f. discontinua → grasso + cristalli di zucchero, frutta secca) es. 2 - 5
- GRASSO IN ACQUA + ARIA (f. discontinua → grasso + aria) es. 3b + 4
- GRASSO IN ACQUA + SOSPENSIONI + ARIA (f. discontinua → grasso + cristalli di zucchero, frutta secca + aria) es. 2/4 combinati; 3a

FUNZIONI degli INGREDIENTI

ZUCCHERO

- Dolcezza, aroma, struttura
- Reazione di Maillard (con latte), igroscopicità (problemi di stickiness in ambienti umidi), ricristallizzazione (desiderata o non desiderata)

SCIROPPO di GLUCOSIO

- Controlla la ricristallizzazione, previene graining, reazione di Maillard (alto DE → + destrosio e maltosio → + intensa), influenza su masticabilità (basso DE → + polisaccaridi, + masticabile (chewy))
- RAPPORTO fra ZUCCHERO e SCIROPPO di GLUCOSIO
 - In toffee 1:1; in toffee con ingredienti 1:1,2; in toffee con miele / malto
 1:0,8 (prevenire cold flow); in fudge 1:0,8

LATTE

- Gusto, struttura, masticabilità, reazione di Maillard
- Latte condensato o latte in polvere → va reidratato
- Lattosio → cattiva solubilità → seme di ricristallizzazione

GRASSI

- Riducono dolcezza e appiccicosità, controllano masticabilità, legano l'aroma, riducono effetto di ritrazione (shrinking effect)
- Attenzione a limiti legislativi (minima quantità di grassi di latte per dichiarazione), ossidazione e rancidità, melting point del grasso (ideale max 34C)

GELATINA

- Influenza su masticabilità, prodotti aerati, funzione emulsionante
- Bloom medio basso → + elasticità → + chewy
- Attenzione a shrinking \rightarrow 84 − 86% proteine

FONDANT

- Seme di ricristallizzazione
- Dimensione dei cristalli del fondant
- Se processo con batchroller → max 5% (rottura)
- Se estrusione → fino a 10-20%
- Con zucchero a velo ricristallizzazione + grossolana

EMULSIONANTE

 Stabilizza l'emulsione e previene migrazione → + shelf life, controlla la dispersione del grasso

PROCESSO PRODUTTIVO

- COTTURA 120-125C. Stessi macchinari utilizzati per caramelle dure. In presenza di proteine → sistemi di cottura con raschietti (es. rotor cooker).
 Caramellizzatore → tempi e temperature definite per reazione Maillard con sviluppo aroma e colorazione tipica.
- RAFFREDDAMENTO / TEMPERAGGIO Stesso principio caramelle dure, temperatura plasticità 35-45C. Raffreddamento in tavolo, tamburo o cintura di raffreddamento
- FORMATURA →
 - A. Batch roller (pre-cristallizzazione), poi cut & wrap e stoccaggio per terminare cristallizzazione
 - B. estrusore
 - C. depositati in amido (maturazione) o in stampi

OSSERVAZIONI

- Shrinkage (ritrazione) durante cut & wrapping. Causa: troppe proteine (gelatina). Correzioni: utilizzare gelatina con basso bloom, gomma arabica; diminuire contenuto in polisaccaridi; riposo prima del cut & wrap
- Stickiness
- Cold flow (deformazione)
- → Meno problemi in chewy candy con ricristallizzazione, ma attenzione a controllarla!
- → Per prodotti con proteine del latte: caramellizzazione

(% zuccheri riducenti: destrosio, fruttosio, maltosio, lattosio - % proteine (aminoacidi) – t cottura; tempo cottura; t caramellizzazione; tempo caramellizzazione; pH → aggiunta di 1% bicarbonato di sodio → + reazione; velocità di raffreddamento)

→ Per prodotti aerati: - pulling machine

 mixer sotto pressione (grasso ed emulsionante dopo aerazione → foam killer) t elevata (>100C), tempo <

RICETTE LABORATORIO

CHEWY CANDY

Ingredienti

Soluzione gelatina 120 bloom (1:2)	11.25g
Acqua	112.5g

Sciroppo glucosio 42 DE 450g

Zucchero 375g

Grasso Toflip 93.75g

Lecitina 3.75g

Fondant 85g

Colore, aroma, acido

Cottura 122C

3 min pulling machine

AROMI - CONSIDERAZIONI

- Temperatura di aggiunta inferiori (100-110C)
- Solventi preferenziali: PG, triacetina (fase grassa)
- Caramel, fudge → vanillina. Aroma sviluppato da reazione di Maillard
- Inclusioni

GOMMOSE & GELATINE

CARATTERISTICHE GENERALI

- Convenzionalmente, vengono definiti gommose i prodotti con struttura più elastica - chewy (gomma arabica, gelatina e amido) e gelatine quelle con struttura più corta e morbida (agar-agar, pectina)
- **Umidità** circa 20% (cottura a t relativamente basse)
- Consistenza dipende da agente gelificante, rapporto fra zucchero e sciroppo di glucosio, umidità residua, passaggio in amido (t ambiente o t controllata)

GELATINA

- Collagene (proteina)
- Estrazione da suini (pelle ossa), bovini (pelle ossa), pollame e pesce
- Processo Acido (tipo A) o Alcalino (tipo B) per rendere il prodotto solubile in acqua calda
- Contiene anche 1-2% sali minerali e 8-15% acqua

PROPRIETA'

- Dà un gel termoreversibile
- **Gelificazione** lenta → 100% forza dopo 16 ore
- Può assorbire 5-10 volte il suo peso in acqua ma non si dissolve in acqua fredda →
 diversi modi di reidratarla (granuli più spessi → a freddo; granuli più fini → a
 caldo; metodo convenzionale, high speed o intermedio)
- **Melting point** (temperatura di liquefazione) e setting point (temperatura di inizio gelificazione). Melting point > per gelatina alto bloom
- **Bloom** = "forza" della gelatina; basso 50-120; medio 130-180; alto 200-300

- Punto isoelettrico → le cariche positive e negative sono equilibrate (pH del punto isoelettrico determinato durante il processo produttivo: gelatina tipo A 8-9; gelatina tipo B 4,8-5,4 → rischio in confetteria!). Se pH del mezzo = pHi → prodotto perde trasparenza ed consistenza
- Ad alte **temperature**, e **pH** alti o bassi, la soluzione di gelatina può perdere forza. A 50-60C e pH 5-6 degradazione non significativa per 4-6 ore
- Ad alto bloom meno colore giallastro; gelatina A più chiara
- Soluzione preparata prima dell'uso (no stoccaggio)
- Utilizzo come agente gelificante (gommose, 6-10%, alto bloom), agente montante (marshmallows, 1-5%, medio bloom), stabilizzante, emulsionante (chewy candies, anche per chewiness, 0,5 2,5%, basso bloom), legante (compresse, 02 0,4%, medio bloom), adesivo formazione di film (prodotti bassinati, gumming, 15-20%)
- Trasparenza

RICETTA TIPO

KERRY

Acqua 15-18%

Gelatina 6-10% (sostituzione: -50 bloom \rightarrow + 15%)

Zucchero 25-30%

Zucchero invertito 2-10%

Sciroppo di glucosio 40-50% (trasparenza, no cristall)

Liquirizia, miele 3-5%

Acido 1-2%

Aroma, colore

Equilibrio umidità relativa 60-65%

PROCESSO

- Preparazione soluzione gelatina
- Cottura zuccheri
- Raffreddamento (sotto 90C) e aggiunta soluzione gelatina
- Aggiunta aroma colore acido
- Colaggio in amido a 76-78% solidi (industrialmente fino a 80%) e 70-80C

Con pressure dissolver la gelatina può essere aggiunta dall'inizio

KERRY

VARIAZIONI DI TEXTURE

- + gelatina \rightarrow + chewy
- < bloom \rightarrow + morbida
- < DE → + soda
- < umidità → + soda
- Combinata con agar o pectina → struttura più corta
- Con amido → più sodo e più corto
- Con gomma arabica → più dura e meno elastica
- Con aggiunta di piccola quantità di pectina o agar melting point sale (paesi caldi)

TROUBLE SHOOTING

- Prodotto troppo morbido → poca gelatina, dissoluzione non sufficiente, temperatura troppo alta all'aggiunta dell'acido, troppo zucchero invertito
- Prodotto che crisallizza → rapporto zucchero / sciroppo di glucosio non corretto, pochi solidi totali al deposito, basso contenuto in gelatina

PECTINA

- Idrocolloide, componente delle piante (mele, agrumi)
- Pectine alto metossile → formano gel in mezzi acidi e zuccherati(> 55% zucchero; pH 3,6). In confetteria utilizzate slow – extra slow set
- Pectine basso metossile → formano gel in presenza di un catione bivalente (di solito calcio); indipendente da pH e solidi in soluzione (0-85%); gel termo reversibile. In confetteria utilizzo per filling
- Pectina da mela → più scura e dà una struttura più granulosa; pectina da agrumi
 → più chiara e dà struttura con taglio più netto, elastica

PROPRIETA'

- **Solubilizzazione** → per ottenere un gel omogeneo → dispersione senza grumi (premix con zucchero, 5 volte la quantità di pectina)
- Gel stabile e consistente (influenza su gelificazione: temperatura, tipo di pectina, pH, presenza di zucchero e altre sostanze disciolte, ioni calcio)
- Gel irreversibile
- Meno solidi al deposito \rightarrow + **acido** (es. 75-76% \rightarrow pH 3,2 3,3; 79-80% \rightarrow pH 3,5 3,6)
- Sale **tampone** (sodio o potassio citrato, sodio o potassio tartrato) → ritardare effetto dell'acido a inizio gelificazione → + tempo per depositare

PROCESSO

- Cottura in bollitore (pre-dissoluzione della pectina) oppure sistema continuo (jet cooker / pressure dissolver).
- Dopo aggiunta di acido temperatura min 80C per evitare gelificazione
- Colaggio in amido oppure stampi (plastica, metallo, silicone)

RICETTA TIPO

1,7 g pectina tamponata

500 g zucchero

330g sciroppo glucosio (ricristallizzazione superficiale voluta)

331220 g acqua

X mL soluzione 50% acido citrico per arrivare a pH 3,3 – 3,4

Solido: 78%

Patè de fruit (gelatina di frutta) → aggiunta di 25% di frutta

Con quantità di pectina superiore (2,5%) → aspetto più simile a gommosa

PARAMETRI che influenzano la struttura:

dosaggio della pectina, tipo di pectina, tipo e quantità di frutta, solidi totali, tipo di sale tampone, rapporto zucchero / sciroppo di glucosio, combinazione con altri agenti gelificanti (gelatina, amido)

PROBLEMATICHE

- gel troppo morbido: pH troppo alto, solidi troppo bassi, poca pectina
- taglio non netto: pregelificazione (temperatura, pH, solidi, tempo di colaggio)
- setting troppo veloce: pH, troppa pectina, temperatura di addizione dell'acido troppo bassa
- prodotto troppo consistente: troppa pectina, troppi solidi, pH troppo basso
- Consistenza "chewy": troppi solidi, sciroppo di glucosio a DE troppo basso
- Cristallizzazione: poco sciroppo di glucosio, poca inversione

AGAR-AGAR

- Estratto da **alghe** (Gelidium e Gracilaria), componente della parete cellulare
- Composto da polisaccaridi (catene di galattosio): agarosio (con proprietà di formare gel) e agaropectina

PROPRIETA'

- Solubilità: insolubile in acqua fredda (ma può assorbire fino a 5 volte il suo peso in acqua)
- Dissoluzione in acqua sotto agitazione (30 volte il peso in acqua)
- Alto potere gelificante in basse concentrazioni
- **Struttura** "corta", simile a quella della pectina, ma non necessita di acido e zucchero per gelificare
- Temperatura di Setting → 35-45C
- Temperatura di liquefazione → 70-85C
- Gel termoreversibile
- Acido e calore → perdita di potere gelificante (acido da aggiungere < 70C)
- Effetto **stabilizzante** → utilizzato in prodotti aerati

RICETTA TIPO

Acqua 20-22%

Agar agar 0.8 - 1.2%

Zucchero 40-50%

Zucchero invertito 2-5% parziale ricristallizzazione voluta

Sciroppo di glucosio 25-30%

Aroma, colore, acido

Equilibrio di umidità relativa \rightarrow 70-75% \rightarrow in nostro clima tende a seccare

AMIDO

- Estratto da **piante** (riso, patata, tapioca, frumento)
- Struttura dei granuli diversa a seconda della specie
- Catene di polisaccaridi (unità base: destrosio): amilosio (lineare) e amilopectina (ramificata)
- Amilosio

 proprietà gelificanti (forma gel opaco dopo raffreddamento).
 Gelatinizza ad alte temperature, no facile dissoluzione, basso potere legante.
 Tendenza a retrogradazione (contrazione)
- Amilopectina → gelatinizza a basse temperature. Non forma gel, ma dà viscosità.
 Buona solubilità in acuq e alto potere legante. Dà soluzione trasparente
- Diverse proporzioni amilosio / amilopectina in diversi amidi (waxy mais → 99% amilopectina)
- Cottura dell'amido: preparazione slurry (sospensione) → idratazione dei granuli
 → viscosità e trasparenza. Oltre temperatura di gelatinizzazione picco (distruzione dei granuli con rilascio di acqua e caduta di viscosità)
- Amidi modificati per utilizzo in confetteria (diminuzione viscosità a caldo → ok per macchinari)

PROCESSO

- Cottura
- Colaggio in amido (70% solidi)
- Essiccazione (come per gomma arabica, necessaria: colati con solidi più bassi → deve perdere acqua)
- Prodotto finale: 85-90% solidi

- Percentuale di amido: 12-30%
- Texture differenti a seconda che amido modificato abbia più amilopectina (struttura morbida, trasparente, un po' elastica) o più amilosio (struttura più dura, opaco, struttura corta)
- Durante cottura e colaggio → viscosità bassa

GOMMA ARABICA

- Resina essiccata di Acacia Senegal
- Prezzo molto variabile
- Diversi gradi di **qualità** → Kordofan: migliore
- Utilizzata in boccole o in polvere
- 3 **frazioni**: arabinogalattano (88%) complesso arabinogalattano proteine (10%) glicoproteine (1%)

CARATTERISTICHE

- Molto solubile in acqua (soluzioni 50%)
- Addensa ma non forma gel
- Sensibile a variazioni di pH

USO IN CONFETTERIA: gommose, pastiglie, prodotti aerati, compresse, caramelle chewy, prodotti bassinati)

PROPRIETA'

Addensante, legante (incapsulazione di aromi), emulsionante, stabilizzante, masticabilità, formazione di film

PROCESSO:

- •Dissoluzione gomma arabica (alcune ore per de-aerare a 40-50C)
- •Cottura degli zuccheri
- •Mix della gomma arabica in soluzione con la massa di zucchero cotto
- Aromatizzazione e colore della massa
- Colaggio in amido
- •3-4 giorni a 60C per essiccazione

Solidi al colaggio: 65-69%

Temperatura al colaggio: 60-70C

Prodotti piccoli (es. cuberdon)

Con l'uso di un pressure dissolver la gomma arabica può essere aggiunta dall'inizio

RICETTA TIPO (GOMMOSA DURA)

Acqua 10-13%

Gomma arabica 40-50%

Zucchero 30-40%

Zucchero invertito 2-5% sc. Gluc non necessario perché g.

arabica fa da anticristallizzante

Sciroppo di glucosio 10-15%

Miele, liquirizia... 3-5%

Aroma, colore, acido

Equilibrio di umidità relativa: 50-55%

MACCHINARI PER PROCESSO CONTINUO

JET COOKER. Vapore a diretto contatto con il prodotto (problemi igienici). Agente gelificante può essere aggiunto in slurry (gelatina, gomma arabica o agar), o come sostanza mixata a secco (amido, pectina). Alte temperature e alta turbolenza; tempi molto veloci; no problemi di stickiness con amido. Solidi possono essere ridotti (5%) per condensazione del vapore

PRESSURE DISSOLVER. Ingredienti non cotti ma dissolti. Serpentine di cottura. Cottura sotto pressione \rightarrow acqua non evapora ma trattenuta come solvente. (\rightarrow partenza da ricetta con 90% solido). Stress termico breve. Dosaggio esatto degli ingredienti (\rightarrow risparmio acqua ed energia)

NUOVI SISTEMI. Simili a pressure dissolver ma con vapore nella serpentina \rightarrow no contatto tra vapore e prodotto.

COLAGGIO DI GOMMOSE E GELATINE

- TECNOLOGIA "MOGUL": prodotti depositati in amido (perdita ulteriore umidità).
- COLAGGIO NON IN AMIDO: forme in gomma o metallo processo continuo (breve tempo in forma) non ulteriore perdita di umidità. Prodotti possibili: pectine, alcuni toffee (+ nuovo amido di pisello sviluppato da Roquette)
- LINEA MOGUL (processo industriale)
- Prodotti multistrato → più "depositors"
- ONE SHOT: dosaggio contemporaneo di 2 masse in un solo ciclo di colaggio con uno speciale ugello per dare un solo prodotto (es. ripieno o prodotti bicolori)
- Amido può assorbire fino a 14% umidità → va essiccato, se no crosta fuori da caramelle. Partenza: 5-7%
- Caratteristiche dell'amido: granulometria (15-45 micron), stabile, gusto odore neutro – temperatura di gelatinizzazione alta
- Amidi utilizzati: mais, frumento o mix
- Umidità assorbita: 1% pectine, 2% fondant, 3% agar, 4% gelatina

RICETTE LABORATORIO

GOMMOSA

Ingredienti

Soluzione gelatina 240bloom (gel1: acqua2)	165g
Acqua	75g
Zucchero	225g
Sciroppo glucosio 42	300g

Cottura 116 C

Aggiunta gelatina < 90C

Acido, aromi, colore

GELEE

Ingredienti

Fase A

Pectina Classic CS501 6,5g (0,7%)

Trisodio citrato 1,25g

Zucchero 50g

Fase B

Acqua 110g Zucchero 200g

Sciroppo di glucosio 165g

Fase C

Acido citrico (sol 50%) 6 ml

Aroma, colore

Cottura 108C

AROMI - CONSIDERAZIONI

- Temperature di aggiunta inferiori: 90C
- Percentuale di alcool non crea troppi problemi (può essere espressamente richiesta)
- Contenuto di acqua maggiore che in caramelle dure → percezione dell'aroma diversa
- Percezione dell'aroma cambia in funzione dell'agente gelificante utilizzato: pectina aroma più "pulito" (dosaggio 5 v > dosaggio in sviluppo), texture più morbida; gelatina → gusto di base non ottimo (dosaggio 10 v > sviluppo); agar-agar → retrogusto di pesce (va coperto con l'aroma); amido → utilizzato in quantità più elevate → prodotti meno dolci, appiattisce l'aroma (fino a x 20-30 dosaggio in sviluppo), retrogusto indesiderato
- Aroma nella cera per lucidatura
- Eventuale aggiunta di acido / zucchero nella parte esterna della caramella

PRODOTTI BASSINATI

DEFINIZIONE

Nucleo o centro coperto da strati successivi di

- Zucchero → confetti (dragees) duri (<3% umidità)
- **Zucchero e sciroppo di glucosio** → confetti morbidi (7-10% umidità)
- Cioccolato da copertura → confetti di cioccolato

Superficie liscia, compatta e regolare ottenuta con trattamento in pentola rotante (frizione)

Centro: può essere **naturale** (nocciola, mandorla, uvetta) o **prodotto** (lente di cioccolato, chewing gum, fondant, gommosa)

VANTAGGI

- Protezione del prodotto (temperatura, umidità, stabilità meccanica)
- Sensazione sensoriale (croccantezza, effetto rinfrescante)
- Sensazione aromatica (aromi diversi in copertura e centro)
- Effetto visivo: diversi colori, superficie con granuli stampe

PRINCIPI DELLA BASSINATURA

- Aggiunta di sciroppo
- Rotazione
- Riscaldamento (scaldare la pentola o applicare aria secca)

Bassinatura manuale ancora molto utilizzata (possibilità di differenziazione)

BASSINATURA CON ZUCCHERO

- 1. Pre-trattamento dei centri (setacciati, frutta secca tostata per aumentare shelf life)
- 2. Gumming pre-coating (dipende dalle caratteristiche del centro; non sempre necessaria → jelly beans)
 - Scopi: isolare il centro e impedire migrazione; aumentare adesione del coating al centro; uniformare; aumentare stabilità termica; ridurre tempi di processo; dare stabilità meccanica
 - Passaggi: inumidire i centri con soluzione zuccherina al 70-80% + soluzione di gomma arabica (1:1), gelatina (1:2), amido o maltodestrina → 45-65% materia secca; spolverare con polvere legante (zucchero a velo, zucchero cristallino, zucchero a velo e gomma arabica (80/20 o 50/50) o zucchero a velo e amido; asciugare (stoccati per 1 notte; ora prodotti che permettono di bassinare dopo 20 min)

3. **Panning** (hard \rightarrow zucchero; soft 50/50 zucchero e sciroppo di glucosio o $0/100 \rightarrow$ come jelly beans, traslucidi). Strati: microcristalli di zucchero, da evaporazione acqua

Hard panning:

- Caratteristiche: strato sottile (centro/copertura = 75-70/25-30), duro, croccante. 1-3% umidità residua; 30-120 strati; 3-5 min. per strato; tempo totale 6-8 ore; soluzione 70-80% solidi; temperatura dell'aria applicata dipendente dal centro; umidità relativa < 50%.
- **Tipologie di centri**: lenti di cioccolato, chewing gum, non pareilles, frutta secca.
- **Ingredienti** principali: zucchero. Secondari: gomma arabica, gelatina, maltodestrina, amido, aroma, colore, cera, shellac.
- **Procedimento**: Soluzione satura, insatura o sovrasatura spruzzata sul centro e acqua evaporata → strato di sciroppo cristallizza (cristalli < 5 micron). Asciugatura troppo veloce → cristalli troppo spessi e superficie non uniforme. Rischio di acqua intrappolata in strati sottostanti → migrazione verso la superficie. Stop asciugatura con completamento cristallizzazione → inizio polvere

- Ricetta tipo per soluzione: 750 g zucchero, 250 acqua, 10 sciroppo di glucosio cotti a 110C (80% solidi), poi aggiunta di 110 grammi acqua, 30 biossido di titanio, aroma e colore (→ 72% solidi)
 - Passaggi:
 - 1. engrossing (20 strati, alto contenuto di solidi, 74 75%)

KERRY

- 2. **whitening** (con biossido di titanio, o con amido, o con carbonato di calcio)
 - 3. **smoothening** (soluzione meno concentrata, 71 72%)
 - 4. **colouring** (colori solubili in acqua danno colorazioni meno intense)
- Soft panning: copertura più spessa, morbida
 - Caratteristiche: 7-10% umidità; 3-5 strati; 20-40 min. /strato (2-3 h); sistema a 2 fasi → cristalli dentro la fase liquida continua
 - **Ingredienti**: soluzione non satura di zucchero sciroppo di glucosio (70-72% solidi) (1:1; 1:0,5; solo sciroppo di glucosio → 55-65% solidi) Dusting powder: zucchero fine (casta) o a velo (perdita di trasparenza)
 - Passaggi: Colore aggiunto dal principio. No aria per essiccare

4. **Lucidatura / Laccatura**. Prodotti solidi o liquidi (base acqua, base olio e base alcool) per trattamento superficiale, a dosaggi molto bassi (0,04 – 0,2% per solidi; 0,1 – 1% per liquidi)

Importanza dell'uniformità dei centri e dell'assenza di polvere Temperatura e umidità relativa dipendono dall'agente lucidante utilizzato (sempre comunque < 65%).

Componenti degli agenti di lucidatura: gomma arabica (formazione di film, emulsionante, azione protettiva, lucidante, amido modificato, sciroppo di glucosio basso DE (previene perdita di umidità), zucchero o destrosio (prolungamento shelf life, aumenta materia secca senza influire su viscosità, grassi vegetali (minore tendenza ad appiccicosità; stabilizza emulsione), acido Per lucidatura confetti morbidi / duri → cere o mix di cere e grassi / oli (cera d'api, cera carnauba, paraffina, vaselina, talco) → legislazione Prodotti base acqua no per duri; prodotti base alcool no aria Shellac → estratto da un insetto. Protegge brillantezza e aumenta shelf life. Basato su alcool. Barriera (utilizzato in climi caldo – umidi)

- Fondente, al latte, bianco, o compound
- Utilizzo di aria fredda e secca
- Caratteristiche: umidità < 1%; numero di strati 15-20 (pochi min./strato); centro/copertura = 75/25 a 60/40
- Procedimento: gumming (evitare fat bloom dal frutto secco interno al cioccolato) – chocolate panning – polishing - sealing
- **Processo**: temperatura dell'aria dipende da tipo di cioccolato (16-18C per fondente, 14-16C per bianco). No utilizzate cere per polishing → brillantezza in prodotti con bassinatura dura ottenuta per frizione; in cioccolato no!). Cioccolato si può utilizzare non temperato (40-45C)

PROCESSO DI BASSINATURA

- Diverse forme di bassina (pera, lente) → stress meccanico
- **Zona** di turbolenza, di rotazione e di caduta (qui si applica lo sciroppo)
- Velocità di rotazione dipendente da tipo di centro; angolo 30-45 gradi
- Bassine automatiche (grandi quantità; aria entra da sotto)
- Vantaggi e svantaggi nelle 2 tipologie
- Applicazione dello sciroppo manuale o spray (con o senza aria \rightarrow sotto pressione)

AGGIUNTA DI AROMA

- Applicazione manuale in una parte dello sciroppo
- Dosaggio nel tank di sciroppo
- Spruzzatura separata (es. menta)
- Aroma non messo in tutti gli strati (solo fra metà e fine) → impressione che l'aroma sia ovunque

CHEWING GUM & BUBBLE GUM

CARATTERISTICHE

- Ingrediente principale e distintivo: gomma base (sostanza elastica e non solubile in acqua, masticabile)
- Componenti della gomma base:
 - Gomme sintetiche (da industria petrolifera) → polimeri es. butadiene,
 stirene
 - Resine (naturali e sintetiche) es. polivinil acetato
 - Cere (naturali o sintetiche; softener)
 - Emulsionanti (riducono appiccicosità a denti e labbra; facilitano assorbimento di saliva) es. glicerolo monostearato o lecitina
 - Softeners (grassi idrogenati)
 - Antiossidanti (BHT, BHA o tocoferoli)
 - Fillers: ingredienti "di riempimento", economici, senza proprietà elastiche; utilizzati in quantità minori in gomme di qualità più elevate.
 Calcio carbonato (reagisce con acido → utilizzato per mente) o Talco

- Bubble gum → > quantità di gomma
- Nuovi sviluppi → gomme che non attaccano a denti e labbra
- Diversi formati di gomma base (fogli, tavole, pellets)

PROCESSO

- Ingredienti mixati secondo preciso ordine tempo in Z mixing machine (a batch o in mixer continui)
- Estrusione (dopo riposo di 5-20 min in pre-extruder)
- Formatura → rolling & scoring (confetti o pellet o pillows, solitamente poi bassinati, e lastrine) – ball forming – cut & wrap (tipo big babol, come per chewy candy). Per filling: coestrusione

RICETTE LABORATORIO

BUBBLE GUM con zucchero

Ingredienti sciroppo (X 500 g):

Acqua	O,	38 g
Zucchero	2 93 g	
Sciroppo di glucosio		114 g
Sciroppo di sorbitolo 70%		58 g

Ingredienti bubble gum (X 600 g)

Gomma base per bubble gum	180 g
Sciroppo per bubble gum	48 g
Zucchero a velo	350 g
Lecitina di soia	3 g
Glicerina	30 g

CHEWING GUM senza zucchero

Ingredienti (per 600 grammi)

Gomma base	198g
Lecitina	3g
Sciroppo di maltitolo)	36g
Sorbitolo	136,2g
Mannitolo	30g
Glicerina	48g
Sorbitolo	172,2g
Aspartame	2,4g
Acesulfame K	1,2g
Acido, Aroma	

AROMI (& TREND) - CONSIDERAZIONI

- Aromi molto concentrati (x 100 rispetto a resa in sviluppo) e dosaggi elevati
- Aromi basati in triacetina (fa anche da plastificante) o senza solvente
- Prodotti costosi → inclusioni (flakes, microburst, microgranuli, granuli colorati)
- No problemi legati ad alte temperature (generalmente intorno a 50C)
- Flavour changing
- Extra acidi
- Veicolo per prodotti ad alto valore aggiunto
- Aromi "mascheranti" (es. bitter masking)
- Prodotti generalmente sugar free
- Nuovi formati → cube, multistrato, confetti ripieni, chewing gum compressi
- Prodotto intermedio fra cosmetica e confetteria → può seguire diverse legislazioni

COMPRESSE

CARATTERISTICHE

- Ingrediente principale: zucchero granulato (per migliorare caratteristiche di flusso e compressabilità in macchina, e texture del prodotto finito → no sabbiosità, no sfaldamento; evitare polverosità) + lubrificante (magnesio stearato)
- Produzione in macchine compressatrici

PROCESSO DI GRANULAZIONE

- Dry blending: di zucchero e colori, aromi o altri additivi (componenti volatili aggiunte alla fine)
- Wet mixing: aggiunta soluzione o sospensione di legante (gomma arabica, gelatina, sciroppo di glucosio o amido)
- Wet granulation: mix dello stadio precedente rotto in granuli
- Drying: granuli asciugati
- **Dry blending**: aromi volatili aggiunti; poi aggiunto lubrificante (grassi, acido stearico, magnesio o calcio stearato o talco) per prevenire appiccicosità ai pistoni

Umidità 1,5 % → possibilità di comprimere con pressione minore

Per contatto: viviana.costa@kerry.com

