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A B S T R A C T

The aim of this study was to evaluate the efficacy of a multi-analytical approach for origin authentication of
cocoa bean shells (CBS). The overall chemical profiles of CBS from different origins were characterized using
diffuse reflectance near-infrared spectroscopy (NIRS) and attenuated total reflectance mid-infrared spectroscopy
(ATR-FT-IR) for molecular composition identification, as well as inductively coupled plasma-optical emission
spectroscopy (ICP-OES) for elemental composition identification. Exploratory chemometric techniques based on
Principal Component Analysis (PCA) were applied to each single technique for the identification of systematic
patterns related to the geographical origin of samples. A combination of the three techniques proved to be the
most promising approach to establish classification models. Partial Least Squares-Discriminant Analysis mod-
elling of fused PCA scores of three independent models was used and compared with single technique models.
Improved classification of CBS samples was obtained using the fused model. Satisfactory classification rates were
obtained for Central African samples with an accuracy of 0.84.

1. Introduction

Since the 19th century, cocoa has undergone continuous growth in
consumption in a variety of forms, thus having garnered outstanding
economic interest from chocolate industries for constant innovation and
modernization. As is the case with many other agro-food activities, the
cocoa industry produces large amounts of by-products (https://www.
icco.org/). Cocoa bean shells (CBS) represent one of the main by-pro-
ducts, almost 12% of the original harvest weight after husking and
grinding of dried cocoa seeds, representing a non-negligible disposal
problem. Thus, legislation and environmental issues are forcing in-
dustries to define process optimization and recovery/recycling strate-
gies. Recently, bioconversion of by-products has attracted the interest
of scientific researchers and new strategic visions or dedicated policies
are being developed to manage food industry wastes in the most effi-
cient way – abandoning the “take, make and dispose” behaviour and
acting out a circular economy paradigm (Sørensen, Aru, Khakimov,
Aunskjær, & Engelsen, 2018). The increasing interest surrounding by-
products certainly has an environmental basis, but an important role is
played by the tendency to reduce the use of synthetic additives in food
and replace them with natural substances with high quality/cost ratios

(Carocho, Morales, & Ferreira, 2015). Moreover, the demand for new
functional foods rich in bio-nutrients, such as polyphenols, fibre, and n-
3 fatty acids among others, has driven interest in rich food wastes, such
as seed husks (Andrade et al., 2012; Jansman, Verstegen, Huisman, &
Van den Berg, 1995), where recycling of vegetal by-products represents
one of the valorisation strategies. Therefore, the development of CBS
valorisation strategies is aimed at reducing the environmental impacts
of cocoa production and promoting conversion of a by-product into a
value-added product with applications in the food and healthcare sec-
tors. The definition of the chemical composition of CBS from different
countries is meant to evaluate systematic differences due to their origin.
Chemical analysis of CBS was carried out, as reported in several re-
search papers, because of its interesting features related to flavour,
phenolic compounds and nutritional values (Barbosa-Pereira,
Guglielmetti, & Zeppa, 2018; Manzano et al., 2017; Redgwell et al.,
2003; Serra Bonvehí & Escolá Jordà, 1998; Martín-Cabrejas, Valiente,
Esteban, Mollá, & Waldron, 1994). However, a complete characteriza-
tion based on different methodologies to highlight similarities and
differences in the composition of samples from different countries has
not been accomplished yet. In this work, CBS samples from different
countries were analysed using three different analytical methods, i.e.
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near-infrared spectroscopy (NIRS), mid-infrared spectroscopy by atte-
nuated total reflectance (ATR-FT-IR) and inductively coupled plasma-
optical emission spectroscopy (ICP-OES), to obtain broad chemical in-
formation at both the molecular and elementary levels. The aim of this
study was to evaluate the validity of simple and rapid analytical tech-
niques, supported by a chemometric approach, for the identification of
differences due to different geographical origins of CBS samples, with
the perspective of a future application in traceability and origin au-
thentication of CBS as a food additive.

Nowadays, the exchange of foodstuffs is realised in a complex and
interconnected global net, and food products are often involved in
fraudulence, false information, contamination risks and counterfeiting.
For this reason, it is extremely important to protect and valorise au-
thentic products, including regional specialties. Innovative and reliable
strategies to individuate specific markers of origin, as well as char-
acteristic compositional patterns that can be associated with a precise
origin, are thus urgently needed (Mandrile, Zeppa, Giovannozzi, &
Rossi, 2016). Geographical origin indicators could provide an analytical
response to the geographic traceability problem and support the
documental certification, which is used today to guarantee food and
food-additive provenance. Different techniques such as nuclear mag-
netic resonance (NMR) and isotope ratio mass spectrometry can play
relevant roles in identifying origin indications (Lee et al., 2011). Rapid
and non-destructive techniques, such as NIRS, are particularly inter-
esting because of the possibility to obtain an efficient and non-biased
overview of the entire sample chemistry (Sørensen, Khakimov, &
Engelsen, 2016). The chemical specificity and ease of sampling of NIRS
make it an attractive tool for rapid and comprehensive food analysis.
The complex patterns of signals revealed by IR analysis, both in the
near- and mid-infrared spectral regions are correlated to the contents of
the different chemical constituents, such as proteins, fatty acids, car-
bohydrates, alimentary fibre, and phenolic compounds. Statistics and
multivariate data analysis offer powerful tools to identify robust cor-
relations between the chemical constituents and their geographical
origins, providing validated models for the recognition of unknown
samples with a certain degree of probability (Peres, Barlet, Loiseau, &
Montet, 2007; Kelly, Heaton, & Hoogewerff, 2005). In this work, dif-
ferent chemometric approaches were used to calculate both explorative
and predictive models. Principal component analysis (PCA) was first
applied as a well-established strategy in food science for data explora-
tion and visualisation in order to extract useful information from nu-
merous experimental results (Munck, Nørgaard, Engelsen, Bro, &
Andersson, 1998). Moreover, data fusion for multi-block analysis was
employed to improve models, gaining information from several dif-
ferent analytical techniques (Biancolillo, Bucci, Magrì, Magrì, & Marini,
2014; Skov, Honoré, Hansen, Næs, & Engelsen, 2014; Silvestri et al.,
2014; Zakaria et al., 2010).

2. Materials and methods

2.1. Samples

Fermented and dried cocoa (Theobroma cacao L.) samples were se-
lected and collected within the COVALFOOD project funded by
European Union’s Seventh Framework Programme, involving five
Italian chocolate industries. A complete list of 78 samples with asso-
ciated information concerning supplier, provenance and variety is re-
ported in Table 1S.1 (Supplementary Information). For an easier ex-
ploration of the sample pool, charts of geographical and varietal
distribution are shown in Fig. 1S.1. All samples were imported as un-
treated raw materials, and the geographical origin was guaranteed by
the supplying industry. All samples were roasted and decorticated in a
laboratory in a ventilated oven for 20min at 130 °C. After roasting, the
fragile shells of the beans was separated by mechanical rubbing and
removed by vacuum suction. The collected CBS were ground using a
Retsch ZM 200 ultracentrifugal mill (RetschGmbh, Haan, Germany) and

stored as fine, dry powder (250 µm) in a desiccator in closed containers.

2.2. Near infrared spectroscopy

NIRS spectra of CBS were collected in the spectral range
10,000–4000 cm−1 (1000–2500 nm) using an Antaris II FT-NIR spec-
trometer (Thermo Fisher, Waltham, USA) in diffuse reflectance mode.
The integrating sphere accessorise was used to collect diffuse reflected
light. CBS samples were analysed without sample pre-treatment.
Briefly, 0.1 g of CBS powder was weighed and transferred to a quartz
glass vial, which was positioned on the integrating sphere. Each spec-
trum was collected at a spectral resolution of 8 cm−1 and with 32 scans
in total. A clean, flat gold surface was used for background collection.
Three measurement replicates were collected per sample. All samples
were measured in randomized order.

2.3. Mid infrared spectroscopy

ATR-FT-IR spectra in the mid-infrared region (500–4000 cm−1)
were collected using a Nicolet FT-IR spectrometer (Thermo Fisher,
Waltham, USA) equipped with a Germanium crystal (n= 5.7) for a
maximum sample penetration of 1 µm. Each spectrum was collected at a
spectral resolution of 4 cm−1 and with 64 scans in total. The sample
powder was pressed with a conical tip onto the crystal and a pressure of
15 bar was applied. The tip and the crystal were thoroughly washed
with ethanol before each measurement to avoid cross contamination.
Three spectra were collected for each sample, with resampling for each
replicate.

2.4. ICP-OES elemental composition

ICP-OES measurements were performed on an Agilent 5100
Synchronous Vertical Dual View instrument (Agilent, Santa Clara,
California, USA), equipped with an EasyFit torch (Agilent P/N G8010-
60228). Samples were measured in radial mode, using a plasma flow of
12ml/min and nebulizer flow of 0.7 ml/min, with a rinse time of 15 s
and stabilization time of 15 s, in three replicates. Viewing height was
set to 8mm. Prior to measurement, the samples were digested in an
Antor Paar Multiwave (Graz, Austria) GO microwave oven: 5mg of CBS
samples was placed in the oven Teflon tubes, 1 ml of HNO3 5% v/v was
added and the tubes were sealed according to the manufacturer speci-
fications. The temperature ramp was set to reach 180 °C in 5min, then
held constant, and the total treatment lasted 40min. After digestion,
the samples were further diluted with 4ml HNO3 5% v/v to obtain a
clear solution before being deposited into tubes and placed in the auto-
sampler for ICP analysis. All glassware, tubes and equipment were
cleansed in HNO3 5% v/v as needed.

2.5. Data treatment

Chemometric data analysis was carried out using PLS Toolbox from
Eigenvector Research, Inc. (Manson, WA, USA) for Matlab R2015a
(Mathworks, Natick, USA). PCA is a linear factorization method un-
iquely suited for data exploration. As an explorative tool, PCA provides
visualization of multivariate data as score points in a model space
(Wold, Esbensen, & Geladi, 1987). PCA score plots are useful to explore
data and to identify correlations between measured variables and the
information of interest, such as geographical provenience of CBS, in this
case. Next, PLS-DA (Barker & Rayens, 2003) models were calculated to
compare the classification performances of the three different techni-
ques, both separately and contemporarily by joining the three datasets.
Ten classes were considered: Central Africa, Ecuador, Gulf of Mexico,
Indonesia, Mexico, Peru, São Tomé, Colombia, Venezuela and Brazil.
All of the calculated PLS-DA models were validated using leave-one
group-out cross validation. The subsets of samples used as tests sets in
cross validations correspond to the country of origin. Data pre-
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processing details for each technique are reported. Leave-one group-out
cross validation was performed using as group vector the country of
origin. Sensitivity (True Positive/(True Positive+ False Negative)),
Specificity (True Negative/(True Negative+ False Positive)), Accuracy
(correctly classified samples/total samples) and Precision (True Posi-
tive/(True Positive+ False Positive) were considered as model eva-
luation parameters for each class in cross validations to compare clas-
sification performances of the different techniques.

2.5.1. NIRS data treatment
Pre-processing of NIRS data was applied to extract useful informa-

tion from the dataset. Absolute absorbance variations and unwanted
light scattering were removed using pre-processing of the NIRS data
(Martens, Nielsen, & Engelsen, 2003). The most effective pre-processing
was chosen based on the minimum differences between replicates on
the PCA scores plots relative to the distance between samples. 2nd
derivative (Savitzky Golay, filter width 15 and polynomial order 2)
coupled with standard normal variate (SNV) normalization was useful
to remove random shift of the baseline offset (Barnes, Dhanoa, & Lister,
1989). In addition, the derivatives of spectra were calculated to in-
crease sensitivity to changing data trends. Processed spectra are shown
in Fig. 2S.1. Unwanted variability was successfully removed as de-
monstrated by the narrow grouping of the replicates obtained after
processing shown in Fig. 2S.2 in Supplementary Information. PCA was
applied to visualize the data and to investigate systematic differences
among samples, and variables with particular relevance were identi-
fied. A 4 LVs PLS-DA classification model was also calculated to dis-
criminate classes of samples from different geographical areas. The
same spectral pre-processing was used.

2.5.2. ATR-FT-IR data treatment
Pre-processing of data was performed to suppress variability asso-

ciated with unwanted noise. The selection criterion for data pre-pro-
cessing was the maximized closeness of the PCA scores of technical
replicates on PC1, as shown in Fig. 3S.1 in Supplementary Information.
Baseline correction (using an asymmetric weighted least squares algo-
rithm, with basis filter of order 2) (Peng et al., 2010) followed by
second derivative (Savitzky Golay, filter width 15 and polynomial order
2) and mean centring was selected as optimal pre-processing. PCA
models for data visualization and exploration were calculated; a PLS-
DA classification model using 4 LVs of the same pre-processed data was
also calculated to compare ATR-FT-IR classification capabilities with
the other techniques.

2.5.3. ICP-OES data treatment
ICP emission spectra were evaluated for quantification using a ca-

libration curve per element. The calibration curves were estimated
using two series of standards prepared by dilution of a certified stan-
dard mix (ICP Multi-element standard solution IV, Sigma Aldrich,
(Shnelldorf, Germany) containing known concentration of 21 elements
(Al, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sr, Tl
and Zn). Standard concentrations were 0, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8,
10, 20, 30, 40, 60, 80 and 100mg/100 g of the certified standard
concentration, which was 5mg/l for all elements, except for potassium,
which was 50mg/l in the standard solution. Three emission wave-
lengths were monitored for each element, then the intensity revealed
for only one λ was selected per element based on the best correlation
coefficient of the corresponding calibration curve and trying to avoid
interference between different elements: λAl= 237.3 nm;
λB= 249.7 nm; λBa= 455.4 nm; λBi = 190.2 nm; λCa= 396.8 nm;
λCd= 228.8 nm; λCo= 230.8 nm; λCr= 206.2 nm; λCu= 324.8 nm;
λFe= 234.4 nm; λK= 766.5 nm; λLi= 670.8 nm; λMg=285.2 nm;
λMn= 259.4 nm; λM o= 203.8 nm; λNa= 589.0 nm; λNi= 221.6 nm; λ
Pb= 217.0 nm; λ Sr= 421.6 nm; λTl = 351.9 nm; λZn= 202.5 nm.

The table of results was then imported into Matlab and processed
with the PLS Toolbox for PCA model calculation and PLS-DA

classification. Autoscaling was performed on the data. Three LVs were
considered for PLS-DA classification models. Cross validation was used
to evaluate the classification capabilities of the models, leaving one
country out at each validation step, as described for the other techni-
ques.

2.5.4. Data fusion
The multi-block tool of the PLS toolbox by Eigenvector was used to

fuse the PCA scores from the three single PCA models resulting from the
different analytical techniques. A joined model exploiting mid-level
data fusion was obtained (Borràs et al., 2015). To make the inter-
pretation clearer, the measurement replicates were averaged, and one
matrix line per sample was maintained for the three different original
datasets (NIRS, MIR-ATR and ICP). Each block was first decomposed by
PCA and the resulting scores were fused into a new dataset. The sam-
ples’ scores for the most relevant PCs were considered to calculate a
new fused model. Seven PCs were considered for MIRS and ICP, and six
PCs were considered for NIRS. Thus, twenty initial variables were used
to build the new joined PCA model. Default autoscale was applied be-
fore data joining. The PLS-DA method was then performed with auto-
scaled data to obtain a classification model (Ballabio & Consonni,
2013). The class vector was represented by the area of origin. It was
composed of 10 classes i.e. Central Africa, Colombia, Ecuador, Gulf of
Mexico, Indonesia, Mexico, Peru, São Tomé, Venezuela and Brazil.
Unfortunately, the number of samples per class was not balanced due to
sample availability. Five latent variables were considered for the PLS-
DA model, based on the minimum average classification error in cross
validation, using the leave-one-country-out cross validation strategy.

3. Results and discussion

3.1. NIRS characterization of CBS samples

The NIRS profiles show the typical broad bands of overtones and
combination bands of vibrational modes associated with the main
constituents of vegetal origin materials. Assignments of most bands of
the NIR spectrum are reported in Table 2S.1 in the Supplementary
Information (Jacobsen, Søndergaard, Møller, Desler, & Munck, 2005).
The mean NIR spectra for all CBS samples are shown in Fig. 1a, together
with the standard deviation profiles. Similar spectral shapes were ob-
tained for all samples: the same bands were present in all spectra with
slight differences in mutual intensities.

Vibrational spectroscopy represents a rapid strategy to gather che-
mical information of a complex matrix, reducing cost, time and en-
vironmental impact of analysis. NIR spectra can be effectively corre-
lated to the main alimentary components, as widely reported in the
literature (De Oliveira, Roque, de Maia, Stringheta, & Teófilo, 2018;
Dong, Sørensen, He, & Engelsen, 2017; Mandrile et al., 2018).

The sensitivity of NIRS to the botanical variety involved was tested
first, since it has been previously demonstrated in the literature that
differences in the chemical composition of different varieties of
Theobroma Cacao L. are present (Elwers, Zambrano, Rohsius, & Lieberei,
2009). The outcome of the PCA on the NIR spectra is shown in Fig. 1b.
In contrast to expectations, different botanical varieties did not cause
evident systematic clustering of NIR spectra. The scores of NIR spectra
for Forastero and Trinitario samples overlapped in the score plots
(Fig. 1b), no separation occurred either in the PC2/PC1 plot, or in the
later PCs (plots not shown). This can probably be attributed to the
complexity of the sample set, which introduces considerable and con-
fusing variability. However, Arriba samples, a specific variety cultivated
only in Ecuador (green squares on the scores plot in Fig. 1b), was
specifically, even though not selectively, characterized by negative
scores on PC1 and by positive scores on PC2, attesting to the capability
of NIR spectra to identify common chemical features of Arriba samples.
The loading profiles (Fig. 2S.3a) and the variance captured (Fig. 2S.4)
allow to define what spectral regions are involved in each relevant PC.
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Fig. 1. a) Mean NIR spectrum of all CBS samples (green) and standard deviation limits (blue); b) Scores plot of NIRS data PCA coloured in accordance with variety; c,
d) Zoom of average spectrum of Arriba samples compared with the mean spectrum calculated considering all other NIR spectra. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. a) PC2/PC1 scores plot of NIR spectra of CBS sample coloured by geographical origin. b) PC4/PC5/PC6 scores plot of NIR spectra of CBS sample coloured by
geographical origin. c) Average NIR spectra of CBS from Africa and America as macro-classes (red and green respectively) and mean spectra of São Tomé and Ecuador
groups (light blue and orange respectively); d, e) Zoom on the spectral regions which render Asian samples different from all other CBS samples; (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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PC1, was mainly characterized by fatty acid bands as 5670–5780 cm−1

(1st CeH str) and 4325 cm−1 (1st CeH str+ 1st CeH def CH2) and
4250 cm−1 (1st CeH str+ 1st CeH def). In addition, PC1 also captured
some regions related to proteins such as 5170–5190 cm−1 (2nd C]O of
CONH), 5269 cm−1 (2nd C]O of COOH), 6320 cm−1 (1st NeH str of
CONH) and 6535 cm−1 (1st NeH str of RNH2) and 6950 cm−1. PC2,
instead, exhibited three maxima at 4400 cm−1 (1st OeH str+ 1st CeC
str, associated with starch), 4763 cm−1 (2nd OeH def+ 2nd CeO str of
starch) and 5000 cm−1 (2nd OeH def+ 1st CeO def of starch). This
indicates that PC2 mostly represents the starch content of the samples.
PCA highlighted a major proportion of fatty acids and vegetal proteins
in the examined Arriba samples, as shown in Fig. 1c, d, whereas lower
intensity in the spectral regions was associated with polysaccharide,
such as starch (corresponding enlarged spectral regions are not shown
for reasons of brevity).

As far as correlations between CBS geographical origins and NIR
spectra are concerned, the information provided by the scores plot
appears confusing at first sight; however, certain interesting con-
siderations can be identified. Features common to all samples origi-
nating from central Africa were noticed in the scores plot (Fig. 2a) when
considering PC2. On average, Central African samples (red rhombus in
Fig. 2a) showed positive scores on PC2, mainly related to poly-
saccharide and starch bands (Fig. 2S.3, 2S.4 can be consulted for all
attributions of spectral bands to the PCs). Moreover, other common
features were noticed in further PCs, such as negative scores on PC3
(Fig. 2S.6b) (where the main contributions are 5218 cm−1, 1st OeH str
of phenols, 5878 cm−1 1st CeH str CH3, 6075 cm−1 1st CeH str of R-
CH-CH, 7062 cm−1 and 2nd CeH str+ 1st CeH def of aromatic com-
pounds) and positive again on PC4 (Fig. 2S.6c) which is related mainly
to carbohydrates (4790 cm−1 1st OeH str+ 1st OeH def ROH of su-
crose and starch, 6264 cm−1 and 1st OeH str intramolecular H-bond of
starch or glucose). Although the separation of the examined groups was
not sufficient for selective discrimination, it was confirmed that the
geographical origin information was captured by NIRS. As shown in
Fig. 2a, African samples from São Tomé (a small island in the Gulf of
Guinea, at latitude 0°) showed features in common with samples
coming from America, which on average showed negative scores on
PC2. The scores of São Tomé samples (light blue rhombus in Fig. 2a)
were mixed with those of Gulf of Mexico samples; this can be attributed
to similar environmental and climatic conditions of small islands which
influence the chemical composition of cocoa fruits and, therefore, of
CBS (see also Fig. 2S.6 a to appreciate the similarities of São Tomé CBS
with samples from the islands and coasts of the Gulf of Mexico).
Moreover, Ecuadorian samples appeared more similar to African sam-
ples than to American ones. Indeed, in Fig. 2a, orange circles corre-
sponding to Ecuadorian samples are mixed with the red rhombus cor-
responding to samples from Central Africa. In Fig. 2b, the average NIR
spectra of the macro classes Africa and America are compared with the
spectra of São Tomé and Ecuador, and show peculiar behaviour in
contrast with the general trend.

The Asian samples were separated from the others (blue triangles in
Fig. 2b) because of high values on PCs 4, 5 and 6. PC4 is characterized
by a peak around 4530 cm−1. This spectral region, represented in
Fig. 2d was assigned to ROH combination modes, so it can be hy-
pothesized that the sugar content differs for Asian samples with respect
to all of the others. The most represented spectral region in PC5 (which
is relevant for the clustering of Asian samples) is the side of the peak at
6300 cm−1. This region, represented in Fig. 2e, highlights that the band
shapes are relevant, more so than band intensity, in this case. PC6 was

also responsible for the following spectral regions: 4466 cm−1 (beta-
glucan), 5114 cm−1 (2nd C]O of esters) and 7147 cm−1 typical of R-
OH (as already mentioned, Fig. 2S.3, 2S.4 can be consulted for all at-
tributions of spectral bands to the PCs).

The definition of rules to correlate the NIR spectral variability with
the geographic area of origin based on the PCA scores plot of NIR
spectra is not immediately apparent. However, certain common trends
were noticed for samples from the same area, and NIR spectra were
demonstrated to contain useful information for geographical prove-
nance analysis.

3.2. ATR-FT-IR spectra

Spectral profiles in the mid-infrared region are shown in Fig. 3a. As
for NIRS, ATR-FT-IR spectroscopy was expected to deliver information
regarding the chemical composition of CBS samples, including most
biochemical species present in the matrix. Although absorption bands
in the mid-infrared region were more defined and narrower because
primary vibration modes absorb in this spectral region, the visual in-
terpretation of spectra was difficult, especially in the so-called finger-
print region, between 1750 cm−1 and 500 cm−1. Main band inter-
pretation is reported in Table 3S.1 in Supplementary Information.
(Socrates, 2001; Rubio‐Diaz & Rodriguez‐Saona, 2010; Li-Chan,
Chalmers, & Griffiths, 2011). The region between 2260 and 2440 cm−1,
where the CO2 band is present, was excluded.

MIRS spectra provided information in agreement with NIRS in-
vestigations. Signals were more defined and spectral specificity was
increased compared to that for NIRS, and PCA score plot investigations
revealed an effective strategy to explore spectral similarities.
Similarities and differences between samples are ruled by PC1, 2 and 3.
The correspondence between PCs and MIR spectral regions was eval-
uated by analysing Fig. 3S.4, where the MIR spectrum was super-
imposed over the histogram of the percentage of variance captured by
each PC, to understand which bands drive the score distributions on the
scores plot. PC1 was mainly dominated by CHx vibrations in the
3000–2800 cm−1 and 1460–1420 cm−1 regions (samples with high
intensity signals at 2920 cm−1 and 1463 cm−1 present lower values of
PC1). Moreover, the 1730 cm−1 peak (C]O stretching) that showed
increased intensity in Arriba samples was also represented in PC1; PC2
captured variance in the 1700–1650 cm−1 region (high values of PC2
mean lower intensity at 1560 cm−1 and 1525 cm−1 of amide I-II, and
lower intensity of the 1690 cm−1 shoulder). Several peaks associated
with carbohydrates were also relevant, for example the 763 cm−1 peak
related to pyranose compounds was modelled by PC5. Variety in-
formation revealed a certain grouping of Arriba samples that showed
high PC2 scores and lower intensity of PC5, in agreement with NIRS
results. The scores plot coloured by variety information is shown in
Fig. 3S.5.

The different geographical provenances drive differentiation be-
tween samples, and some general considerations can be extracted from
the scores plot (Fig. 3b, c). PC2 certainly explains interesting char-
acteristics of Central African samples that show positive scores on PC2.
Samples from São Tomé showed more similarities with samples from
the Gulf of Mexico, Venezuela and Colombia, as also attested by NIRS
data presented in the previous paragraph. This confirms that similar
climatic and environmental conditions are crucial in determining the
chemical composition captured by spectroscopic techniques, as pre-
viously reported in the literature for cocoa samples (Marseglia et al.,
2016). African samples showed higher intensity at 2954 cm−1 and

Fig. 3. a) ATR-FT-IR average spectrum of all CBS samples (green) and standard deviation limits (blue); b) PC2 scores plot which highlights common behaviour of
African samples; c) PC5/PC6 scores plot that allow to highlight a characteristic trend for Ecuador samples; d) MIR average spectra of CHx stretching bands of samples
from different geographical origins; e) MIR average spectra of Ecuadorian samples compared with American ones in the spectral region where Ecuador samples
exhibit distinct characteristics with respect to American samples. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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2870 cm−1 in the CHx stretching vibrations (Fig. 3d). Moreover, PC5
and PC6 were relevant to identify features in common between Ecua-
dorian samples. 87% of Ecuadorian samples were placed to the left of
the left diagonal of the PC6/PC5 plot (Fig. 3c). This is due to the ratio
between 1280 cm−1 (amide III of β-sheet proteins) and 1320 cm−1 or
1440 cm−1 that allows to separate samples from Ecuador from other
American samples, as shown in Fig. 3e. Moreover, low values in PC5
reflected low intensities at 673 cm−1 and 1600 cm−1 (ring breathing
modes of polysaccharides) as already noticed for Arriba samples (en-
larged spectral regions not shown for reasons of brevity).

The ATR-FT-IR spectrum represents the sum of numerous bands of
several functional groups, which are contemporarily present in more
than one biochemical compound. Beyond hypothesized interpretations,
it should be stressed that an accurate understanding of which peaks and
bands drive the score distributions is necessary to avoid mis-
interpretation. To unequivocally associate the relevant spectral regions
to specific classes of compounds remains complicated when a whole
and complex matrix such as food is analysed. However, the possibility
to identify spectral features that precisely characterize samples from the
same origin is an indication that correlations between geographical
origin and vibrational spectra can be modelled.

3.3. ICP-OES elemental characterization of CBS samples

Raw ICP-OES results are shown in Table 4S.1 in Supplementary
Information. The most abundant elements were Ca, Mg, and K which
each had a concentration at least one order of magnitude higher com-
pared to all other elements. Among the secondary elements, particu-
larly relevant were Al, Fe and Li (Barker & Rayens, 2003). Relevant
amounts of lead were revealed in all samples (around 0.3mg/kg),
which is a high value compared with the average content of lead in
foods reported in 2007 by the Agency for Toxic Substances and Disease
Registry (Abadin et al., 2007). All other elements were revealed to be at
concentrations lower than 0.2mg/kg: particularly low concentrations
were determined for Ni and Cr. PCA was used to identify major variance
directions that can be related to geographical origin. Five samples were
identified as very different from the others. These were SB3 and SB4
from Brazil, ICAM10 from Congo, FER8 from Uganda, and FER13 from
Côte d’Yvoire. These samples were excluded as outliers because of their
very low K content. Boron, potassium, magnesium and calcium were
responsible for the most variance captured by PC1, which was not
particularly correlated to the provenance of samples. Aluminium,
chromium, iron, sodium and nickel were particularly relevant for PC2,
whereas cadmium, cobalt and molybdenum, together with calcium and
manganese, were mostly represented in PC3, as shown in Fig. 4d.

Examining the PC2/PC3 loadings and scores plot (Fig. 4a, b), high
levels of Fe and Al were characteristic for the African continent and for
most Central African samples. Moreover, a general deficiency of Ca, K,
Mg, and Ni was revealed. Interestingly, some similarities of São Tomé
samples to American ones were captured by PC2. A relatively higher
content of Fe, Al, Cu and Ni was revealed for these samples; this trend
makes São Tomé samples more like American samples than like African
samples. Moreover, São Tomé samples were characterized by high
content of Ba with respect to other elements. Conversely, Ecuadorian
samples did not exhibit any specific elemental profiles.

3.4. Data fusion to merge chemical information provided by the different
analytical techniques

The idea of data fusion is to merge information, provided by dif-
ferent analytical determinations, in one single data set, to enhance the
quality of the results. The obtained joined PCA model clearly shows that
all three datasets provided useful information for the final model. It was
noticed that the three most represented variables in PC1 were one from
MIR-ATR, one from ICP and one from NIRS (Fig. 5S.1 in Supplementary
Information). The scores plot and the loadings projected on the PC2/

PC1 space are shown in Fig. 5. The grouping of samples based on
geographical origin was improved by the multi-analytical model.
Proximity, and hence common features, were appreciated for samples
from the same geographical area.

Classification models were calculated to quantify the grouping
performances of the joined model compared to the three single models,
based on geographical origins. Even though interesting observations
were previously discussed for the three techniques separately, and some
correlation between geographical origin and composition was defined,
single technique outputs were not accurate and precise for the re-
cognition of the geographical origin of samples in predictive classifi-
cation models. In Table 1, the classification figures of most merit
(sensitivity, specificity, error rate, accuracy, precision) relative to PLS-
DA classification models for geographical discrimination were reported.
The classification performance for sample classes composed of more
than 5 samples are shown. Classification results were higher for the
joined model compared to each of the three single models for Central
Africa, Ecuador and the Gulf of Mexico classes. This experimental evi-
dence was in agreement with literature reports corroborating mid- or
high-level data fusion to increase predictive performance of classifica-
tion models (Doeswijk, Smilde, Hageman, Westerhuis, & Van Eeuwijk,
2011). Single techniques provided nil accuracy and precision for most
classes, except for Central Africa. Moreover, after merging information
from the three techniques, the accuracy (i.e. correctly classified sample
rate) increased.

NIRS, MIRS and ICP profiles together delivered sufficiently accurate
information to capture the common features of African samples, and to
distinguish them from the others. Unfortunately, this was not the case
for the other classes. Low stability emerged during cross validation for
Ecuador, Gulf of Mexico and Venezuela classes. Classification results for
classes composed of less than 10 samples were not considered statisti-
cally valid.

4. Conclusions

Because of the low price and interesting features of CBS, such as the
extraordinary similarity to cocoa powder in terms of colour, taste and
texture, and the potential beneficial effects on human health, research
is needed to assist the valorisation of this food by-product, and to
prevent fraud in the cocoa powder market. The present work demon-
strated the existence of correlations between geographical origins and
composition of CBS samples, even though low specificity for a single
country or restricted areas emerged. Some information regarding what
samples from the same macro-area have in common was described. The
selected techniques provided significant criteria to distinguish sample
classes, such as Central African and Ecuadorian samples, with adequate
accuracy and precision; however, it is very difficult to precisely de-
termine which chemical species drive this separation using only vi-
brational spectroscopy for chemical composition analysis. Nevertheless,
estimates and trends were determined. The geographical traceability of
food based on chemical analysis remains complicated and, invariably,
valid rules are rarely identified. The natural variability of most food
materials is huge; climatic conditions and process variables represent
an intrinsic limit of this field of study. However, the capability to
identify leading variables, common trends and general indications
using rapid and simple techniques is an encouraging result in this do-
main. More sensitive and accurate techniques should be employed for
an exhaustive investigation. Easy-to-use instrumental analysis still
needs the support of more robust analytical strategies for comparison
and calibration.
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Fig. 4. PCA model of ICP-OES data outputs, 2D a) loading and b) scores plots; c) Histogram of mean data for the macro-classes (Africa and America) investigated, and
São Tomé samples that show distinctive features with respect to others; d) Variance captured for each principal component.

Fig. 5. Joined PCA model of NIRS+ ICP+MIRS, a) loadings and b) scores plot on PC1 and PC2.
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