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In this paper, a Fourier Transform Raman spectroscopy method, to authenticate the provenience of wine,
for food traceability applications was developed. In particular, due to the specific chemical fingerprint of
the Raman spectrum, it was possible to discriminate different wines produced in the Piedmont area
(North West Italy) in accordance with i) grape varieties, ii) production area and iii) ageing time. In order
to create a consistent training set, more than 300 samples from tens of different producers were analyzed,
and a chemometric treatment of raw spectra was applied. A discriminant analysis method was employed
in the classification procedures, providing a classification capability (percentage of correct answers) of
90% for validation of grape analysis and geographical area provenance, and a classification capability of
84% for ageing time classification. The present methodology was applied successfully to raw materials
without any preliminary treatment of the sample, providing a response in a very short time.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In order to preserve the quality of food products from particular
geographical areas, and to protect consumers against imitations
and false information, the European Commission has defined, via
Regulations 1151/2012, the designations: Traditional Specialty
Guaranteed (TSG), Protected Designation of Origin (PDO) and
Protected Geographical Indication (PGI) (Regulation (Eu) No
1151/2012 Of The European Parliament And Of The Council of 21
November 2012 on quality schemes for agricultural products and
foodstuffs). Quality labels have an important role in consumer
behavior and give confidence about the origins and the quality of
food. Label assignment is an important market claim and repre-
sents a valuable weapon to attest and justify the economic value
of products. Traceability has become a very relevant concept in
association with edible products and represents an essential tool
to enhance traders and consumers’ confidence in the safety,
quality, and authenticity of food.

Unfortunately, most of food traceability procedures involve
tedious administrative documents, while scientific methodologies
that identify the authenticity of food objectively are preferable.
Accordingly, scientific research is focusing on the development of
analytical methods for traceability to authenticate the geographi-
cal origin of foods (Peres, Barlett, Loiseau, & Montet, 2007), with
the aim of linking food products with distinctive features, such
as ingredients, physical properties and production methods. Food
traceability analysis are usually performed by means of several
analytical techniques, such as mass spectrometry for isotope ratio
determination (Durante, Baschieri, & Bertacchini, 2015), DNA
based techniques, such as polymerase chain reaction (PCR)
(Pardo, 2015) and nuclear magnetic resonance spectrometry
(NMR) (Mazzei, Francesca, Moschetti, & Piccolo, 2010).

In the last two decades, stable isotope methodologies, based on
gas chromatography-isotope ratio mass spectrometry (GC-IRMS)
and GC-pyrolysis-IRMS (Adam, Bartels, Christoph, & Stempfl,
1995; Fronza et al., 1998; Misselhorn & Grafahrend, 1990), have
been applied successfully in quality control of wine following the
establishment of an official wine database for stable isotope
parameters (EU regulations 2670/90, 2347/91 and 2348/91;
Rossmann, 2001). As reported by Bréas, Reniero, Serrini, Martin,
and Rossmann (1994), a classification of wines from different Euro-
pean countries can be achieved with 13C/12C analysis of ethanol
and 18O/16O determination of water, underlining the importance
of the photosynthetic pathway as well as the environmental and
climatological conditions of the vineyard. Even if stable isotope
methods provided consistent results, which could be used for rou-
tine analysis of wines, it is not always simple to find a physical,
chemical or biochemical explanation for variations of isotope ratios
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Table 1
Distribution of wines examined in accordance with grape, PDO and production area.

Grape Denomination Ampelographic
origin

Production
area

Number
of
samples

Nebbiolo Barbaresco 100% Nebbiolo Langhe 24
Nebbiolo Barolo 100% Nebbiolo 56
Nebbiolo Nebbiolo d’Alba 100% Nebbiolo 27
Nebbiolo Nebbiolo Langhe 100% Nebbiolo

Nebbiolo Colline Novaresi
Nebbiolo

100% Nebbiolo North
Piedmont
(Novara)

33

Nebbiolo Coste della Sesia
Nebbiolo

100% Nebbiolo 2

Nebbiolo Ghemme 100% Nebbiolo 10
Nebbiolo Gattinara 100% Nebbiolo 12
Nebbiolo Carema 100% Nebbiolo 25
Nebbiolo Lessona 100% Nebbiolo 3

Nebbiolo Canavese 100% Nebbiolo Canavese 3
Barbera Barbera d’Alba 85–100% Barbera

0–15% Nebbiolo
Langhe 50

Barbera Barbera d’Alba
Superiore

85–100% Barbera
0–15% Nebbiolo

Langhe 14

Barbera Various (Asti,
Pinerolo,
Novara)

85–100% Barbera
0–15% Nebbiolo

North
Piedmont

11

Dolcetto Dolcetto d’Alba 100% Dolcetto Langhe 16
Dolcetto Dolcetto di

Dogliani
100% Dolcetto Dogliani 11

Dolcetto Dolcetto di
Diano d’Alba

100% Dolcetto Langhe 18
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in natural substances or to establish a relevant database for
statistical evaluation.

DNA based technologies have also been exploited in this field
due to their specificity in analysis, which is strictly associated with
genotype (the inherited instructions that an organism carries
within its genetic code), but these technologies inevitably miss
the stochastic significant epigenetic differences accumulating over
time across cells (Petronis, 2010). Dordevic, Wehrens, Postma,
Buydens, and Camin (2012) highlighted the need for new methods
and better geographical discrimination between samples, demon-
strating that multivariate methods are superior to univariate
approaches. The NMR and vibrational spectroscopy techniques
represent interesting alternatives or even complementary meth-
ods. Godelmann et al. (2014) analyzed about 600 German wines
and demonstrated that 1HNMR coupled with statistical data treat-
ment could provide individual ‘‘fingerprints” for wine samples,
which include information about variety, origin, vintage, physio-
logical state, technological treatment, and other factors. The fusion
of NMR profiling and stable isotope data for wine analysis has been
reported in literature with good results (Monakhova et al., 2014).
However, the main drawbacks of the cited techniques (i.e. MS,
NMR and DNA based techniques) are related to the cost of
instruments, extensive sample pre-treatments, and the duration
of analysis, which often reduce the accuracy and precision of mea-
surements. Since simple and rapid analytical methods are needed
to meet the demands of European labeling legislation, vibrational
spectroscopy is emerging as a new and powerful tool in authenti-
cating food provenance.

Vibrational spectroscopy techniques usually provide non-
destructive analysis of samples, rapid collection times with no or
minimal sample pre-treatment, which reduce the total time of
analysis and could support the development of reliable control
procedures and screening methods for food traceability. Moreover,
new modern, portable instruments with smart accessories have
been developed, making these techniques more suitable for in line
process monitoring and in situ analysis (Gallego, Guesalaga,
Bordeu, & Gonzàlez, 2011). These methods encompass absorption
spectroscopy in the mid-infrared (MIR) and the near-infrared
(NIR) for studying fundamental molecular vibrations and their har-
monics (Bauer et al., 2008; Cozzolino, 2014; Cozzolino, Dambergs,
Janik, Cynkar, & Gishen, 2006; Cozzolino, McCarthy, & Bartowsky,
2012), and absorption spectroscopy in the ultra-violet and visible
(UV–vis) regions for probing electronic transitions (Acevedo,
Jiménez, Maldonado, Domínguez, & Narváez, 2007; García-Jares &
Médina, 1995; Harbertson & Spayd, 2006; Roig & Thomas, 2003;
Urbano, Luque de Castro, Pérez, García-Olmo, & Gómez-Nieto,
2006). Raman spectroscopy, which is based on the inelastic scatter-
ing of a monochromatic light, also provides a characteristic spec-
troscopic pattern (i.e. ‘‘molecular fingerprint”) of organic
compounds based on the vibrational modes of chemical bonds
(Li-Chan, Griffiths, & Chalmers, 2010; Thygesen, Løkke,
Micklander, & Engelsen, 2003). Moreover, Raman analysis can be
easily done in aqueous media and through glass containers,
because signals from both water and glass are very weak in the
Raman spectrum (Schulz & Baranska, 2007; Yang & Irudayaraj,
2001) and do not overlap with those from food components, such
as proteins (Li-Cha, Nakai, & Hirotsuka, 1994), lipids (Yang,
Irudayaraj, & Paradkar, 2005) and carbohydrates (Mathlouthi &
Koenig, 1986), which are sensitive and specific.

Raman spectroscopy has demonstrated its value in food trace-
ability for olive oil provenance and composition (Bernuy,
Meurens, Mignolet, & Larondelle, 2008), honey provenance
(Paradkar & Irudayaray, 2001; Özbalcia, Hakkı, Topcua, Kadılarb,
& Tamerc, 2013) and the authenticity of beers (Downey, 2009).
As regards alcoholic beverages, Raman spectroscopy has been used
for the quantification of the alcohol content in whisky, vodka and
other spirituous beverages (Nordon, Mills, Burn, Cusick, &
Littlejohn, 2005). The feasibility of exploiting Raman scattering to
analyze white wines has also been investigated (Meneghini et al.,
2008). In particular, a recent work by Coralie et al. (2015) demon-
strated that resonance condition of some chemical species present
in wine, such as phenolic compounds, hydroxycinnamic acids and
sugars, can be analyzed selectively using lasers at different
wavelengths.

In this work, we evaluated the potential to use Raman
spectroscopy, coupled with a chemometric data treatment, to dis-
criminate different wines from the Piedmont area (North West
Italy) in accordance with grape varieties, production area and age-
ing time. In particular, tests were performed on Nebbiolo, Dolcetto
and Barbera wines, which were chosen for their wide distribution
and their productive and economic relevance to the Italian wine
market. The purpose of the work was to provide a statistically
substantial classification method, based on a set of known
responses (training set) through the chemometric treatment of
data. The work scheme was structured on three levels: classifica-
tion of wines in accordance with the (1) grapes used, (2) produc-
tion area, and (3) age.
2. Materials and methods

2.1. Samples

315 commercial wines were obtained from different winemak-
ers using Nebbiolo, Barbera and Dolcetto grapes. For each grape
variety, wines from the different area and age were selected
(Table 1). More than 10 Protected Designation of Origin (PDO)
wines were examined. The number of samples for each PDO wine
was different based on the winemaker and commercial dissemina-
tion and, inevitably, limited by the availability of samples. All the
samples were furnished directly by the producers, and stored at
+4 �C until analysis.
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2.2. Raman measurements

Raman spectroscopy was performed with a Thermo Scientific
NXR FT-Raman Module Nicolet SeriesTM equipped with an InGaAs
detector (ThermoFisher Scientific, Waltham, USA), a CaF2 beam-
splitter and a 1064 nm laser line. Raman spectra were collected
using a laser (power 0.9 W) in the spectral range 200–4000 cm�1

with a resolution of 4 cm�1. 256 scans were collected to obtain
S/N ratio higher than 15. Samples were analyzed in 4 ml glass vials
positioned vertically on a motorized stage.
Fig. 1. Dolcetto d’Alba PDO (100% Dolcetto grape) (green spectrum), Barbera d’Alba
PDO (minimum 85% Barbera grape) (red spectrum) and Barolo PDO (100% Nebbiolo
grape) (black spectrum).
2.3. Multivariate analysis

The raw Raman spectra were subjected to discriminant analysis
using TQ AnalystTM 8.0 software (ThermoFisher Scientific, Waltham,
USA). Spectra were pre-processed using the Savitzky-Golay
smoothing filter (Savitzky & Golay, 1964) to remove of as much
noise as possible without unduly degrading the spectral informa-
tion. The spectral range to be analyzed was selected in such a
way that interference from random variability of spectra was min-
imized and did not generate spurious information in the classifica-
tion model. Seven restricted spectral regions around Raman peaks
were selected to optimize the classification result. The frequency
regions of spectra that did not contain Raman peaks (e.g. 800–
600 cm�1 and 2800–1800 cm�1) were excluded. In this way,
worthless information was ignored and the best class separation
was obtained. The number of PCs selected was a compromise
between explained variance for each PC and the predictive capabil-
ity of the model: when the cumulative variance reaches the pla-
teau, further components do not provide any useful information
and should be excluded so variables that represent only noise are
not considered. Variables that explain only a small portion of the
variability are not excluded if they improve significantly the classi-
fication capability of the model (% of samples correctly classified).
The chemometric models presented for wine classification were
first validated through a leave-one-out cross-validation procedure
during model optimization (mathematical pretreatment choice,
selection of significant PCs, etc.). Finally, the optimized models
were validated through a cross validation procedure using exclu-
sions sets made up of five samples chosen randomly; the number
of exclusion sets was proportional to the total number of calibra-
tion samples. This classification technique permits unknown dis-
tance to a class center in terms of Mahalanobis distance
(Mahalanobis, 1936) to be calculated and each unknown samples
to be assigned correctly. Md is based on the idea that it contains
an auto-scaling process in and overcomes assumption about the
spherical distribution of sample points around the center of mass;
thus, non-spherical distributions can be described as well as spher-
ical ones. In the generalized formula for Md, the observation are
represented by x = (x1, x2, . . . xn) while l = (l 1, l 2, . . . l n) rep-
resents the observations’ mean. The apexT indicates the transposed
matrix (x � l). S�1 is the inverse of the covariance matrix of the
observations.

MdðxÞ ¼ pðx� lÞTSð�1Þðx� lÞ
If an ellipsoidal distribution is considered, we would expect that

the probability a test point belongs to the set depends not only on
the distance from the center of mass but also the direction. (De
Maesschalck, Jouan-Rimbaud, & Massart, 2000).

The statistical reliability of results will be discussed case by case
to assess the effective classification capability of the proposed
Raman method, even if an external set dedicated to test set valida-
tion was not available. The work scheme of this study was divided
into three consecutive steps: discrimination according to (i) grape,
(ii) production area, and (iii) age.
3. Results and discussion

Food systems are dynamic, chemically complex and, generally,
heterogeneous matrices containing large numbers of biological
molecules. The chemical specificity, ease of sampling, speed, and
non-destructive nature of FT-Raman spectroscopy makes it an
attractive tool for food analysis. Chemical specificity of the Raman
technique relies on the fact that different molecular bonds or
groups of chemical bonds are identified by characteristic
frequency-shifts in incident light (Fig. 1). For this reason, the first
step in compositional analysis of wine using FT-Raman is attribu-
tion of characteristic frequency shifts to vibrational modes of
molecular bonds observed in spectra (Table 1S in supplementary
information).

As Fig. 1 shows, a large band ascribed to OH stretching at
3350 cm�1 was clearly visible in all the spectra analyzed. In addi-
tion, a minor band related to OH bending at 1700–1500 cm�1

was observed. The group of peaks between 3000 and 2800 cm�1

is due to symmetric and asymmetric stretching of CHx bonds. Sev-
eral other characteristic peaks of ethanol are present at frequencies
less than 1500 cm�1. These are associated with several deforma-
tion modes of CHx as reported in Table 1S (Mammone, Sharma, &
Nicol, 1980). All peaks in the wine were shifted slightly in compar-
ison with the pure ethanol peaks; this is due to the simultaneous
presence of different organic species, such as glycerol, acetalde-
hyde, organic acids, and polyphenols including flavonoids and
non-flavonoids. At 1630 cm�1 a low intensity band was present
in the wine spectra. This band is characteristic of C@O stretching,
a relatively inactive Raman vibration. The C@O peak observed
could be attributed to several species present in the matrix (e.g.
organic acids and flavonoids) the carbonyl groups of which are
characterized by slightly different vibration frequencies. This, a
quite broad signal was registered in this spectral region.

The samples analyzed were chosen with the aim of representing
a wide selection of the wines, which were purchased from different
producers. Numerous samples were requested to capture the vari-
ability in the system and obtain a representative dataset for multi-
variate calibration. Raman spectra of the different wines were very
similar to each other, as it can be seen in Fig. 1 where the spectra of
Dolcetto, Barbera and Nebbiolo are compared. This explains why a
univariate analysis would not be effective. It was decided a



Fig. 2. Cooman’s plot for Nebbiolo, Barbera, Dolcetto classification model calculated
using discriminant analysis.
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multivariate approach would be employed to ensure a more com-
plete interpretation of characteristic patterns in the spectra.

From an oenological point of view, the specific features of wine
are the result of synergic effects involving several factors. The wine
composition is very complex and the final organoleptic features are
produced by the interaction of many chemicals, such as sugar,
alcohol, acids and tannins; e.g. total acidity refers to the sour attri-
butes of the wine, which are evaluated in relation to how well the
acidity balances out sweetness. During the course of winemaking
and in the finished wines, tartaric, malic, citric, acetic and lactic
acids can have significant roles and together define the character-
istic acidity of the wine (Bellman & Gallander, 1979). In the same
way, from a spectroscopic point of view, the final wine spectrum
is the result of a synergic interaction of many factors and none
can be regarded in isolation. The literature is poor in respect of
interpretative analysis of Raman spectra from wine because of
the complexity, and only chemometric analysis permits extraction
of the more interesting information and selective parameters to
distinguish and attest to the authenticity of wine products.

The chemometric approach used for the classification was a
supervised classification method, which groups a set of objects in
such a way that objects in the same group (called a class) are more
similar to each other than those belonging to other classes. Train-
ing data were given as sets of spectra partitioned as suggested by
the supervising method (Finley & Joachims, 2005). Different dis-
tance functions were used to evaluate distances between objects
in the same class or the assignment of an unknown object to the
correct class. In this case, Md was used, as described in detail in
Materials and Methods. Applying this concept to the spectral data
of wine, several classification models with good classification capa-
bility were obtained.

3.1. Discrimination in accordance with grape

Three classes of grapes (Nebbiolo, Barbera, Dolcetto) were
selected. 185 Nebbiolo, 75 Barbera and 45 Dolcetto wine samples
were subjected to Raman analysis to create a substantial training
set. The eigen analysis attested that the selected 305 calibration
standards contain sufficient variability for the method calibration.
The spectral range was optimized as reported in Materials and
Methods section. The optimized chemometric model shows a total
variability of 99.34% explained using 20 principal components
(PCs); the number of principal components was optimized by con-
sidering the classification capability (%) (number of correctly classi-
fied samples during cross-validation) as a function of the PCs
number. In particular, leave-one-out cross validation was per-
formed reiteratively raising the number of PCs considered during
each run, and the percentage of correctly classified samples was
plotted as a function of PCs number (Fig. 1S) as well as the variance
explained corresponding to each PC. The plot reported in Fig. 1Swas
used to determine the ideal number of PCs, which corresponded to
20. In order to avoid the over-fitting of data, components that did
not contribute significantly to cumulative variance, and did not pro-
vide useful information for classification, were excluded because
they dealt exclusively with experimental noise.

As Fig. 2 shows, the best optimized method misclassified 13.1%
of 305 standards during leave-one-out cross validation. The clouds
of points representing these three classes were dense, suggesting
high homogeneity within each class. The three clouds were also
very close to each other and overlapped partially, which was the
cause of a misclassification percentage greater than 10%. However,
it should be taken into account that the discipline of some wine
production allows a small percentage of other wines to be intro-
duced (e.g. Barbera wine can contain up to 15% of Nebbiolo grape);
this might explain the closeness of sample classes, which also
caused misclassification. A cross validation test was performed
(and repeated five times) to attest the real ability of the calibrated
model to distinguish wines according to grape. 100 spectra (one
third of the number of calibration standards per each class chosen
randomly) were used in groups of five for cross validation of the
model. During this leave-five-out validation, 86 ± 2% of unknown
samples provided a correct answer. Among the misclassified sam-
ples, 9% belong to Barbera, 2% belong to Dolcetto and 3% belong to
Nebbiolo, on average. It should also be noted that the percentage of
misclassified samples during leave-five-out cross validation
method was comparable with leave-one-out cross validation
results (14% of misclassified with 20 PCs) achieved during model
optimization. Subsequently, 10 unknown Nebbiolo samples were
used as a small test set that provided 90% correct answers.

The loadings profiles corresponding to PCs 1–10, which were
the most interesting for a qualitative description, are shown in
Fig. 3. From careful analysis of them, it is possible to determine
which organoleptic and compositional features were responsible
for classification. However, it must be taken into account that a
synergic interaction of variables led to the class separation and
none can be considered separately. For example, the alcohol con-
tent of a wine is a key parameter for its oenological characteriza-
tion and plays an important role in the spectroscopic analysis in
order to depict a faithful portrait of each sample. The ethanol
Raman peaks are the easiest to be identified in Raman spectra
and these can be identified in most calculated PCs as well. This
aspect plays a crucial role in wine classification.

Sugar content is another important feature that can help in clas-
sification. Since the sugar content of a wine depends on the



Fig. 3. Loadings profiles of the first 10 PCs of the Nebbiolo, Barbera, Dolcetto
classification model calculated through discriminant analysis.
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advancement of the alcoholic fermentation, a well-founded
hypothesis is the negative correlation between sugar and the alco-
hol contents. PC8 and PC9 revealed a significant variability in data
observed around 3500–500 cm�1, where carbohydrates peaks are
typically found. The scores plot, built in accordance with these
PCs, revealed the carbohydrate content varied from sample to sam-
ple without any correlation with the Dolcetto, Barbera or Nebbiolo
classes. The difficulty of defining coherent variability in this case
lies in the fact that all the samples considered were dry wines.

Another important parameter in the Raman characterization of
a biological matrix is the effect of fluorescence. The colored sub-
stances in wine, such as anthocyanins and polyphenols in general,
are directly related to the fluorescence effect observed during spec-
tra acquisition. Fluorescence is, generally, an undesirable effect in
Raman analysis because of the risk of disguising interesting signals
in the spectrum. It can also influence the statistical analysis of wine
spectra during classification. Indeed, the baseline slope of PC1, and
the wide band around 2000 and 1200 cm�1 in PC6 and PC7, attest
to the fact that fluorescence represents a significant variable in the
system examined. This behavior is even more evident when
looking at the disposition of data clouds as a function of PCs influ-
enced by fluorescence, where it can be seen clearly that fluores-
cence is a significant variable. However, the classification of
wines is not impaired by fluorescence, the success of which is
not only in satisfactory modeling of training sets but also by
external validation sets.
Our data revealed that synergic interactions among variables
represented the key to solving an apparently complicated problem.
It was not possible to describe the data if the variables were con-
sidered independently but taken together good separation was
achieved.

Also, dual class models were optimized and, as it turned out, the
most difficult wines to separate were Barbera and Dolcetto
whereas Nebbiolo sets formed a specific well separated class.

3.2. Discrimination in accordance with production area

We also demonstrated the capability of Raman spectroscopy to
separate wines according to grape, and developed a method to
attest to geographical provenance within the same grape class. In
order to understand the importance of geographical area of pro-
duced, it is good to know that if a technical expression describing
particular combination of elements, such as climate, soil and regio-
nal knowhow of winemaker, which defines the uniqueness and
unrepeatability that characterize a labeled wine (Terroir) exists.
The study focused on two wines in particular, Dolcetto and Nebbi-
olo. Within the Dolcetto class (i) Dolcetto d’Alba Doc and (ii) Dol-
cetto di Dogliani Docg were chosen. The production area of
Dolcetto di Dogliani is situated in the southernmost part of Pied-
mont whereas the Dolcetto d’Alba region is situated in a northern
part of the Langhe territory as shown in Fig. 4a. Dolcetto is highest
in the Langhe territory (from 250 to 700 m above sea level) and
characterized by a fresh climate because of its proximity to the
Appenino Ligure and Alpi Marittime mountains ranges. This repre-
sents the best climate condition for Dolcetto wine production
because it slows the grape maturation process.

In this geographic area, the soil varies from generous red soil to
sandy and dry soil (www.regione.piemonte.it); the best soil type
for the Dolcetto production is white, deep, clayey and calcareous.
Dolcetto di Dogliani and Dolcetto d’Alba wines are produced
according to a strict discipline that declares, in a very precise
way, the mandatory geographical area and the variety of grape per-
mitted. Also, the winemaking procedure and the final organoleptic
features are usually controlled through a qualified panel test. Dol-
cetto d’Alba and Dolcetto di Dogliani wines have strong sensory
features and even an expert sommelier might find it difficult to dis-
tinguish the geographic origins of the two by taste. The Raman
analysis coupled with chemometrics provided a good identification
method for classification of the wines according to the area of pro-
duction, as shown in the Cooman’s plot in Fig. 4a.

For Nebbiolo wine, two classes were also set: (i) Langhe (includ-
ing Nebbiolo d’Alba, Barolo, Barbaresco); (ii) Novara&Carema
(including Colline Novaresi, Coste della Sesia, Ghemme, Gattinara
and Carema). The geographical areas involved are shown in the
Piedmont map in the inset of Fig. 4b. Nebbiolo wine is an ancient
red mono-vine wine. Its history in Piedmont region predates the
17th century, and it has thrived because of adaptation to cold cli-
mates (www.langhevini.it). The geographic area designated for
production of Nebbiolo is also clearly specified. The soil should
be clayey, calcareous and acidic or a combination of the three;
the territory must by hilly (at least 650 m above sea level) and
sunny (www.regione.piemonte.it). The chemometric analysis of
Nebbiolo spectra enables classification of Nebbiolo from Langhe
and from Novara & Carema, as shown in the Cooman’s plot in
Fig. 4b.

As stated previously, the whole spectra for the different wines
are responsible for class separation. The number of PCs considered
(6 for Dolcetto classification and 14 for Nebbiolo classification)
represented the best compromise between explained variance
and classification capability, as discussed in Section 3.1 (Fig. 1Sb
and Sc, available in supplementary information). Again, the only
way to achieve the desired results was to use multivariate



Fig. 4. a) Geographical representation of Dolcetto d’Alba and Dolcetto di Dogliani wine production areas. Cooman’s plot and statistical data of DA calibration. b) Geographical
representation of Nebbiolo d’Alba and Nebbiolo di Novara & Carema wine production areas. Cooman’s plot and statistical data of DA calibration.
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approach. Appreciable classification capability (>90%) was
obtained for the two classification models, and the low number
of misclassified standards suggests Raman spectroscopy is able to
discriminate wine provenance when a consistent calibration is
performed.

The cross validation test provided satisfactory results for both
models. Ten samples were chosen randomly (ca. 30% of the calibra-
tion samples from each class) and used in pairs to validate the Dol-
cetto model with an error of 8%; all of the misclassified samples
belonged to ‘‘Dolcetto d’Alba”. The leave-five-out cross-validation
for Nebbiolo was performed using 65 spectra, five-by-five chosen
randomly with respect to the total in each class. In this case, 7%
were misclassified. In particular, one of them was from Alba, while
five were from the northern part of Piedmont (Novara&Carema
class). The validation procedure was repeated five times for both
DA methods attesting a standard deviation of classification capa-
bility of 1% and 2% respectively.
3.3. Discrimination in accordance with age

As a third step, the potential to ‘recognize’ aged from non-aged
oenological products was investigated. Many wines improve in
quality during barrel and bottle storage. Left too long, however,
such wines begin to deteriorate. During the ageing period, acidity
decreases, and further clarification and stabilization occur as well
as the precipitation of undesirable substances, and complex



Fig. 5. Cooman’s plot of Barolo and Barbaresco classification model and statistical
results of calibration.
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compounds affecting flavor and aroma are formed. Wines are usu-
ally aged in wooden barrels made of oak, allowing oxygen to enter
but preventing water and alcohol from escaping. Simple phenols
are transformed during ageing into complex molecules formed
by the condensation of proanthocyanidins and anthocyanins,
which also explains the change of color of aged wines. As the wine
ages, anthocyanins react with other acids and compounds, such as
tannins, pyruvic acid and acetaldehyde, which change the color of
the wine to ‘‘brick red” hues.

One of the most interesting comparisons that can be performed
on Piedmont’s wines concerns Barolo and Barbaresco wine. They
are both produced with the Nebbiolo grape and follow a mono-
grape strict production protocol. What makes a Barolo wine differ-
ent from a Barbaresco wine is essentially the ageing time: Bar-
baresco is aged for at least 26 months whereas Barolo is aged for
at least 38 months. In this study, 56 samples of Barolo and 24 sam-
ples of Barbaresco were analyzed using Raman spectroscopy and
the data collected were processed by discriminant analysis, as pre-
viously described. The statistical separation of the two wines pro-
duced positive results when 9 PCs were considered, as shown in
Fig. 5.

A cross validation of the calibrated model was performed. Spec-
tra from unknown samples (30) were subjected to analysis in
groups of five. The validation procedure was repeated five times
and provided 84 ± 4% correct answers, on average. Among the
16% wrongly classified, 80% were Barolo and 20% were Barbaresco.
4. Conclusions

In this paper, it was shown that Raman spectroscopy coupled
with chemometric analysis can play a role in the authentication
of wine, providing positive results in the recognition of mono-
vine wines in terms of grape (validation test provided reliability
of 93%), geographical provenance (reliability higher than 90%)
and ageing time (reliability higher than 80%). One of the biggest
advantages of the proposed method is the direct analysis of wine,
through the glass container, without any pretreatment and purifi-
cation process. These advantages, together with the speed of data
collection, make Raman Spectroscopy particularly interesting for
the prevention fraud and control of quality labels. The common
drawbacks of Raman spectroscopy in analysis of food matrices,
such as problems with interpretation, were overcome with user-
friendly software that allow sophisticated chemometric methods
to be elaborated using large amounts of data. The chemometric
identification of variability between the different classes meant
wines could be differentiated in accordance with grape, geograph-
ical origin, and ageing time using Raman spectrometry. A dedicated
test set consisting of external samples was subjected to analysis in
order to demonstrate the classification capability of the proposed
method; this proof of principle aimed to show that a multivariate
calibration procedure could provide consistent classification
results when a substantial calibration set was subjected to spectro-
scopic analysis, even in a complex matrix. The more specific and
user-friendly Raman analysis is, the more likely it is to be exploited
by wine producers for certification. The application of Raman spec-
troscopy to distinguish a single producer will be the next chal-
lenge, with a higher impact in commercial field.
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