XII Congresso Nazionale S.I.Di.L.V.

Genova

Magazzini del Cotone

27 - 29 Ottobre 2010

VOLUME degli ATTI
SOPRAVVIVENZA DI STAPHYLOCOCCUS AUREUS IN FORMAGGI INOCULATI CON CEPPI DI LACTOCOCCUS LACTIS PRODUTTORI DI BATTERIOCINE: CASEIFICAZIONI SPERIMENTALI

Keywords: Staphylococcus aureus, formaggio, batteriocine

SUMMARY
In recent years more attention has been dedicated to the study of bacteriocins and their possible application in food processes. Bacteriocins produced by lactic acid bacteria (LAB) can interfere with the growth of many foodborne spoilage and pathogenic bacteria. The aim of this study was to investigate the ability of three nisin-producing *Lactococcus lactis* strains to inhibit the *Staphylococcus aureus* growth during experimental-production of semi-ripened cheese.

INTRODUZIONE
Numerosi studi dimostrano che la microflora autotona presente in svariati prodotti tradizionali oltre a contribuire alla determinazione delle caratteristiche tecnologiche e sensoriali del prodotto finito, possiede un’attività di inibizione nei confronti della crescita di batteri patogeni (1). In particolare, nei prodotti lattiero-caseari e nei prodotti a base di case, tale attività antibatterica può essere legata alla diminuzione del pH (conseguitamente alla produzione di acido lattico e acido acetico), alla produzione di perossido di idrogeno, diacetile e CO₂ o di sostanze di natura proteica come le batteriocine. Quest’ultime possono essere prodotte da svariati specie batteriche tra le quali le più importanti sono prodotte dai Gram positivi. I generi *Lactobacillus, Lactococcus* ed *Enterococcus* sono in grado di sintetizzare a livello ribosomiale numerose batteriocine di piccole dimensioni e termo-stabili. Negli ultimi anni particolare attenzione è stata rivolta allo studio delle batteriocine e alla loro attività al fine della possibile applicazione nei processi produttivi. Al momento, l’unica batteriocina per la quale si autorizza l’impiego come bio-conservante in campo alimentare è la risina prodotta da *Lactococcus lactis*. Approvata nel 1988 dall’FDA (Food and Drug Administration), l’impiego della risina (E234) come conservante alimentare è stato autorizzato dall’UE dalla direttiva 95/2/CE nel formaggio stagionato, e fuso, in taluni budini, nella panna cotta e nel marmorane (2). Attualmente la risina viene impiegata come bio-conservante alimentare in oltre 45 Paesi trovando larga applicazione nei prodotti di origine lattiero-casearia, nelle carni, nei prodotti vegetali (frutta compresa), nei prodotti di panetteria e pescheria, così come in talune tipologie di bevande. L’utilizzo delle batteriocine potrebbe costituire uno strumento tecnologicamente corretto ed efficace, impiegabile nella produzione di prodotti definiti “di alta qualità” soprattutto oggi giorno in cui il consumatore risulta particolarmente sensibile alle produzioni a basso impatto ambientale e al consumo di prodotti naturali.

Lo scopo del presente studio è stato quello di valutare la capacità di tre ceppi di *Lactococcus lactis* produttori di risina di inibire la crescita di *Staphylococcus aureus* in caseificazioni sperimentali di formaggi semi-stagionati.

MATERIALI E METODI
I ceppi di *Lactococcus lactis*, 29FL1, 41FL1 e 45SGL L3 utilizzati nel presente lavoro sono stati isolati rispettivamente da prodotti artigianali piemontesi e più precisamente da salame crudo, da formaggio fresco (caprino pressamico) e da formaggio stagionato (tipo Toma) (1). Su questi ceppi è stata inizialmente valutata in vitro, mediante l’utilizzo della tecnica agar Well Diffusion Assay (AWDA) (3), la capacità di inibire alcuni batteri patogeni e/o alteranti tra cui *Staphylococcus aureus* ATCC®53853™. I ceppi con attività inibente sono stati poi successivamente identificati mediante tecniche di microbiologia molecolare (PCR) e sottoposti al sequenziamento del gene 16S rRNA presso l’IFV-Biotech (Germany) secondo protocollo descritto in letteratura (4).

Mediante l’utilizzo della PCR e di primer specifici per i geni codificanti la produzione di batteriocine (1), i ceppi sono risultati essere produttori di risina. L’isolamento e l’identificazione dei ceppi, la valutazione dell’attività inibente e la caratterizzazione delle batteriocine è stata svolta presso il Dipartimento di Valorizzazione e Protezione delle Risorsa Agroforestali – Di.Va.P.R.A. settore Microbiologia agraria e Tecnologie alimentari di Grugliasco. Presso il Laboratorio Controllo Alimenti dell’Istituto Zooprofilattico Sperimentale PLV sono state allestite quattro caseificazioni sperimentali utilizzando latte vaccino pastoizato alla qualità gentilmente fornito da ABIT (Piemonte Agricola Cons.). Le caseificazioni sono state effettuate per valutare l’andamento di crescita di *S. aureus* rispettivamente in presenza di un ceppo starter commerciale di *Lactococcus lactis* (Sacco) non produttore di batteriocine, e dei tre ceppi di *L. lactis* 25FL1, 41FL1 e 44SGLL3 produttori di risina. Le fasi del processo di caseificazione sono indicate nella tabella 1.

Riscaldamento del latte a 37°C in caldaia	Inoculo: 7-8 log ufc/mL
Aggiunta starter	Inoculo: 5-6 log ufc/mL
Aggiunta di *S. aureus*	60 minuti a 37°C
Aggiunta del caglio	8-15 mL/100 L
Sposta della caglia	30 minuti a 37°C
Rottura della caglia a nocciole	overnight
Spurgio della caglia	7-8 ore
Ribavalo delle forme e pressatura	80%
Salamoia (20%)	15 ore
Stagionatura	60 giorni 8°C / UR 90%

Tabella 1

Per il campionamento sono stati effettuati prelievi sulla caglia dopo coagulazione (tempo zero), 24 ore e dopo salatura, e sulle forme dopo 3, 7, 15, 30, 45 e 60 giorni di stagionatura. Sui campioni si è proceduto al conteggio degli stafilococchi coagulasi positivi secondo metodo ISO 6888-2:1999, al conteggio dei batteri lattici (lattococchi) e dei *L. lactis* produttori di risina mediante metodica tradizionale e tecnica dell’overlay agar.
RISULTATI

L’andamento delle cariche microbiche riferite ai lattococcoidi totali nella caseificazione con il ceppo commerciale e dei Lactis produttori di nisina nelle caseificazioni con i ceppi 29F L1, 41F L1 e 44SGL L3 sono raffigurati nel grafico 1. Come si osserva dal grafico, l’andamento di crescita dei Lactis produttori di nisina inoculati come starter è risultato essere molto simile a quello del ceppo commerciale utilizzato come controllo. In particolare i ceppi 29F L1 e 41F L1 rispetto al ceppo 44SGL L3, hanno mostrato un miglior andamento raggiungendo picchi massimi di crescita durante i primi 3 giorni per poi decrescere gradualmente e stabilizzarsi con cariche intorno a 8-9 log ufc/g fino ai 60 giorni di stagionatura del formaggio.

Grafico 1

I dati ottenuti dal conteggio degli stafilococchi coagulasi positivi per ciascuna caseificazione sono riportati nel grafico 2: ogni valore è stato calcolato come differenza rispetto all’inoculo iniziale (prelievo su cagliata a tempo zero).

Grafico 2

DISCUSSIONE

L’andamento del conteggio di S. aureus nella caseificazione con ceppo commerciale presenta un rapido incremento in prima giornata (+1.2 log ufc/g) per poi decrescere gradualmente fino a valori pari a -2.2 log ufc/g a 60 giorni di stagionatura. I valori sopra riportati sono calcolati come differenza rispetto al prelievo sulla cagliata a tempo zero. Tale andamento ricalca i valori riportati in bibliografia in formaggio a latte crudo bovino e formaggio Manchego (6).

Dai risultati ottenuti è stato possibile osservare come dei tre Lactis inoculati come starter, il ceppo 41F L1 in particolare ha mostrato i migliori risultati sia in termini di sopravvivenza che come attività inibente nei confronti di S. aureus. Il ceppo di S. aureus ha infatti mostrato una diminuzione della carica di 1.73 log ufc/g rispetto ai livelli di inoculo iniziali già dopo il terzo giorno di stagionatura del formaggio.

Questi risultati preliminari confermano la possibile applicazione di questo ceppo produttore di nisina come starter o co-starter nella produzione di formaggi. Ulteriori studi dovranno essere approfonditi al fine di assicurare una possibile applicazione commerciale del ceppo.

BIBLIOGRAFIA

1) Dal Bello B., Rantsiou K., Bello A., Zeppa G., Ambrosoli R., Civera T., Cocolin L., 2010, Microbial ecology of artisanal products from North West of Italy and antimicrobial activity of the autochthonous populations, LWT-Food Science and Technology, 43, 1151-1159.
2) EFSA, 2006, Parere del gruppo di esperti scientifici in merito all’uso di nisina (E234) come additivo alimentare, The EFSA Journal, 314,1-16.

Ricerca eseguita nell’ambito del progetto della Regione Piemonte bando CIPE 2006 (BIOPRO): Quality and biosafety for Piedmont productions: selection and study of bacterial strains with probiotic activity and/or antagonist action towards pathogenic and spoilning microorganisms.